Mathematical and Molecular Topology

This Special Issue, "Mathematical and Molecular Topology" welcomed papers from a broad interdisciplinary area, since topology is concerned with the properties of objects that are preserved under continuous deformations, such as stretching, twisting, crumpling and bending. One of the oldest...

Full description

Saved in:
Bibliographic Details
Other Authors: JÄNTSCHI, Lorentz (Editor), Tomescu, Mihaela (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_112551
005 20230808
003 oapen
006 m o d
007 cr|mn|---annan
008 20230808s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-8353-2 
020 |a 9783036583525 
020 |a 9783036583532 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-8353-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
100 1 |a JÄNTSCHI, Lorentz  |4 edt 
700 1 |a Tomescu, Mihaela  |4 edt 
700 1 |a JÄNTSCHI, Lorentz  |4 oth 
700 1 |a Tomescu, Mihaela  |4 oth 
245 1 0 |a Mathematical and Molecular Topology 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (78 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This Special Issue, "Mathematical and Molecular Topology" welcomed papers from a broad interdisciplinary area, since topology is concerned with the properties of objects that are preserved under continuous deformations, such as stretching, twisting, crumpling and bending. One of the oldest problems in topology is The Seven Bridges of Königsberg. Topology naturally finds application in all fields of engineering, physical sciences, life sciences, social sciences, medicine, business and even arts. The motivating insight behind topology is that some geometric problems depend not on the exact shape of the objects involved, but rather on the way they are put together. Circa 1750, Euler stated the polyhedron formula, V − E + F = 2 (where V, E, and F respectively indicate the number of vertices, edges, and faces of the polyhedron), which may be regarded as the first theorem, signaling the birth of topology. Subjects included in topology are graph theory and algebraic topology. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
650 7 |a Computer science  |2 bicssc 
653 |a closure space 
653 |a canonically closed 
653 |a weakly normal 
653 |a almost normal 
653 |a π-normal 
653 |a weakly π-normal 
653 |a κ-normal 
653 |a local convergence 
653 |a nonlinear equations 
653 |a Banach space 
653 |a Fréchet-derivative 
653 |a Gaussian 
653 |a optimization 
653 |a geometry 
653 |a molecular modeling 
653 |a amino acids 
653 |a maximum clique 
653 |a protein graphs 
653 |a machine learning 
653 |a ProBiS 
653 |a entropies via various molecular descriptors 
653 |a H3BO3 layer structure 
653 |a subdivision of H3BO3 
653 |a line graph of H3BO3 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7677  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/112551  |7 0  |z DOAB: description of the publication