Identification, Knowledge Engineering and Digital Modeling for Adaptive and Intelligent Control

The Special Issue aimed to bring together scientists working in various branches of control theory to discuss manufacturing control problems that include the following: enterprise control and digital ecosystem creation; the development of identification theory and methodology, and related mathematic...

Full description

Saved in:
Bibliographic Details
Other Authors: Bakhtadze, Natalia (Editor), Yadykin, Igor (Editor), Torgashov, Andrei (Editor), Korgin, Nikolay (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
LMI
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_112554
005 20230808
003 oapen
006 m o d
007 cr|mn|---annan
008 20230808s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-8061-6 
020 |a 9783036580609 
020 |a 9783036580616 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-8061-6  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
100 1 |a Bakhtadze, Natalia  |4 edt 
700 1 |a Yadykin, Igor  |4 edt 
700 1 |a Torgashov, Andrei  |4 edt 
700 1 |a Korgin, Nikolay  |4 edt 
700 1 |a Bakhtadze, Natalia  |4 oth 
700 1 |a Yadykin, Igor  |4 oth 
700 1 |a Torgashov, Andrei  |4 oth 
700 1 |a Korgin, Nikolay  |4 oth 
245 1 0 |a Identification, Knowledge Engineering and Digital Modeling for Adaptive and Intelligent Control 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (260 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The Special Issue aimed to bring together scientists working in various branches of control theory to discuss manufacturing control problems that include the following: enterprise control and digital ecosystem creation; the development of identification theory and methodology, and related mathematical problems; parameter, nonparametric, and structure identification and expert analysis; problems regarding selection and data analysis; control systems with an identifier; modeling in intelligent systems; simulation procedures and software; digital identification; reinforcement learning; quantum modeling; intelligent model predictive control; predictive cognitive issues; problems with software quality for complex systems; and global network resources for support processes of modeling and control. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Mathematics & science  |2 bicssc 
653 |a decision-making 
653 |a psychic and behavioral components of activity 
653 |a action 
653 |a result of activity 
653 |a equilibrium stability 
653 |a consensus 
653 |a threshold behavior 
653 |a cognitive dissonance 
653 |a conformity 
653 |a informational control 
653 |a informational confrontation 
653 |a soft sensing 
653 |a multivariate filter 
653 |a reactive distillation 
653 |a optimal stochastic control 
653 |a path planning 
653 |a 2D random search 
653 |a interception 
653 |a external disturbances 
653 |a invariance 
653 |a block control principle 
653 |a decomposition 
653 |a high-gain factors 
653 |a sliding mode control 
653 |a sigmoid function 
653 |a Gramian method 
653 |a bilinear system process identification 
653 |a generalized Lyapunov equation 
653 |a knowledgebase 
653 |a associative search models 
653 |a wavelet analysis 
653 |a adaptive differential evolution 
653 |a evolutionary computing 
653 |a Hammerstein 
653 |a nonlinear system identification 
653 |a bilinear systems 
653 |a eigenmode decomposition 
653 |a spectral expansions 
653 |a Gramians 
653 |a observability 
653 |a controllability 
653 |a small-signal analysis 
653 |a numerical algorithm 
653 |a tokamak 
653 |a plasma equilibrium reconstruction 
653 |a linear plasma models 
653 |a identification 
653 |a state observer 
653 |a LMI 
653 |a least square technique 
653 |a deep neural network 
653 |a parametric uncertainty 
653 |a robust control 
653 |a super-stability 
653 |a regular form 
653 |a dynamic mode decomposition 
653 |a system identification 
653 |a Runge-Kutta method 
653 |a nonparametric model 
653 |a artificial neural network 
653 |a Izhikevich artificial neuron 
653 |a vestibular-ocular reflex 
653 |a control Lyapunov function 
653 |a Bayes criterion 
653 |a Haar wavelets 
653 |a loss function 
653 |a mean risk 
653 |a observable stochastic systems (OStS) 
653 |a stochastic process (StP) 
653 |a wavelet canonical expansion (WLCE) 
653 |a nonparametric identification 
653 |a dynamic system 
653 |a integral model 
653 |a Volterra equations 
653 |a smoothing cubic splines 
653 |a selection of the smoothing option 
653 |a modeling 
653 |a regularization 
653 |a inverse problems 
653 |a balanced identification 
653 |a error analysis 
653 |a one-dimensional heat equation 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7680  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/112554  |7 0  |z DOAB: description of the publication