Advances in Transportation Meteorology

Transportation is one of the most crucial aspects across the world, supporting the daily life of human beings and the sustainable development of the whole of society. Generally, meteorology causes various impacts on transportation operation, safety and efficiency. In the context of global warming, i...

Full description

Saved in:
Bibliographic Details
Other Authors: Liu, Duanyang (Editor), Wang, Hongbin (Editor), Zhu, Shoupeng (Editor)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_113879
005 20230911
003 oapen
006 m o d
007 cr|mn|---annan
008 20230911s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-8460-7 
020 |a 9783036584614 
020 |a 9783036584607 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-8460-7  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
072 7 |a TR  |2 bicssc 
100 1 |a Liu, Duanyang  |4 edt 
700 1 |a Wang, Hongbin  |4 edt 
700 1 |a Zhu, Shoupeng  |4 edt 
700 1 |a Liu, Duanyang  |4 oth 
700 1 |a Wang, Hongbin  |4 oth 
700 1 |a Zhu, Shoupeng  |4 oth 
245 1 0 |a Advances in Transportation Meteorology 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (304 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Transportation is one of the most crucial aspects across the world, supporting the daily life of human beings and the sustainable development of the whole of society. Generally, meteorology causes various impacts on transportation operation, safety and efficiency. In the context of global warming, increasing numbers of extreme weather and climate events (such as fog, icy roads, and extreme winds) have been detected worldwide and are expected to occur more frequently in the future. Meanwhile, extreme events, such as dense fog, rainstorm, and blizzard, tend to damage transportation and traffic facilities (such as express ways, port, airport, and high-speed railway) and induce serious traffic blocks and accidents. In recent decades, concentrated and continuous efforts have been made to carry out meteorological analyses regardless of urban traffic or transportation conditions, including those of highways, shipping, aviation, etc. A number of methods and techniques have been intensively developed to promote the qualities of both observations and forecasts. More recently, state-of-the-art machine learning frameworks have also been widely introduced into studies regarding transportation meteorology and many other fields. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Transport technology & trades  |2 bicssc 
653 |a transportation meteorology 
653 |a pavement temperature prediction 
653 |a deep learning 
653 |a BiLSTM 
653 |a attention mechanisms 
653 |a winter icing 
653 |a air pollution 
653 |a traffic vitality 
653 |a built environment 
653 |a spatial correlation 
653 |a spatial lag model 
653 |a phone signaling data 
653 |a air quality 
653 |a behavioral habits 
653 |a activity density 
653 |a population distribution 
653 |a land use mix 
653 |a wind forecast 
653 |a error decomposition 
653 |a bias 
653 |a distribution 
653 |a sequence 
653 |a urban meteorology 
653 |a observation 
653 |a forecast 
653 |a early warning 
653 |a review 
653 |a China 
653 |a low-level wind shear 
653 |a ensemble learning classifiers 
653 |a Bayesian optimization 
653 |a SHapley Additive exPlanations 
653 |a wind shear 
653 |a go-around 
653 |a machine learning 
653 |a dynamic ensemble selection 
653 |a civil aviation safety 
653 |a pilot reports 
653 |a self-paced ensemble 
653 |a Shapley additive explanations 
653 |a climate change 
653 |a climatology 
653 |a sea ice 
653 |a marginal sea 
653 |a East Asia 
653 |a time-series modeling 
653 |a pavement temperature 
653 |a nowcasting 
653 |a variation characteristics 
653 |a forecast validation 
653 |a relative humidity 
653 |a microwave radiometer data 
653 |a total rainfall 
653 |a precipitation duration 
653 |a vertical distribution 
653 |a Beijing-Tianjin-Hebei region 
653 |a rail breakage 
653 |a frequency 
653 |a high-speed railway 
653 |a Siberian high 
653 |a teleconnection 
653 |a temperature 
653 |a Qinling mountains 
653 |a rainfall 
653 |a change characteristics 
653 |a geographical factors 
653 |a highways 
653 |a road blockage 
653 |a fuzzy analytic hierarchy process 
653 |a CRITIC weight assignment method 
653 |a road network vulnerability 
653 |a spatiotemporal distribution 
653 |a precipitation forecast 
653 |a ConvLSTM 
653 |a PredRNN 
653 |a expressway 
653 |a agglomerate fog 
653 |a risk level prediction of fog-related accidents 
653 |a meteorological conditions 
653 |a road hidden dangers 
653 |a traffic flow conditions 
653 |a visibility 
653 |a Yellow Sea and Bohai Sea 
653 |a observation data 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7720  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/113879  |7 0  |z DOAB: description of the publication