Artificial Neural Networks for IoT-Enabled Smart Applications

In the age of neural networks and the Internet of Things (IoT), the search for new neural network architectures capable of operating on devices with limited computing power and small memory size is becoming an urgent agenda. This reprint focuses on recent developments in the organization of artifici...

Full description

Saved in:
Bibliographic Details
Other Authors: Velichko, Andrei (Editor), Korzun, Dmitry (Editor), Meigal, Alexander (Editor)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_113896
005 20230911
003 oapen
006 m o d
007 cr|mn|---annan
008 20230911s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-8429-4 
020 |a 9783036584287 
020 |a 9783036584294 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-8429-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
072 7 |a PSAN  |2 bicssc 
100 1 |a Velichko, Andrei  |4 edt 
700 1 |a Korzun, Dmitry  |4 edt 
700 1 |a Meigal, Alexander  |4 edt 
700 1 |a Velichko, Andrei  |4 oth 
700 1 |a Korzun, Dmitry  |4 oth 
700 1 |a Meigal, Alexander  |4 oth 
245 1 0 |a Artificial Neural Networks for IoT-Enabled Smart Applications 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (268 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In the age of neural networks and the Internet of Things (IoT), the search for new neural network architectures capable of operating on devices with limited computing power and small memory size is becoming an urgent agenda. This reprint focuses on recent developments in the organization of artificial intelligence (AI) on edge devices for various IoT-enabled smart applications and starts with the illustration of achievements in smart healthcare services. Digitalization of healthcare driven by the IoT and AI leads to the effective use of sensors, enabling various parameters of the human body to be instantly tracked and processed in daily life. The concept of machine learning sensors is applied to the diagnosis of COVID-19 as an IoT application in healthcare and ambient assisted living. Wearable sensors and IoT-enabled technologies also look promising for monitoring motor activity and gait in Parkinson's disease patients. IoT devices with AI can be effectively used in speech recognition and environmental monitoring, for detecting distracting actions in driver activities and for lifesaving applications such as child drowning prevention systems. Smart disaster rescue is an interesting development of a wearable device for search dogs that recognizes the behavior of a dog when a victim is found, using deep learning models. This reprint illustrates advanced cases of using AI technology for IoT-enabled smart applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
650 7 |a Neurosciences  |2 bicssc 
653 |a deep learning 
653 |a canine activity recognition 
653 |a bark detection 
653 |a wearable computing 
653 |a search and rescue system 
653 |a stacking 
653 |a ensemble learning 
653 |a distracted driving 
653 |a imaginary speech 
653 |a convolutional neural network 
653 |a electroencephalography 
653 |a signal processing 
653 |a Kara One database 
653 |a COVID-19 
653 |a biochemical and hematological biomarkers 
653 |a routine blood values 
653 |a feature selection method 
653 |a LogNNet neural network 
653 |a Internet of Medical Things 
653 |a IoT 
653 |a 5G and beyond 
653 |a child drowning prevention 
653 |a network slicing architecture 
653 |a point clouds 
653 |a remote sensing 
653 |a machine learning sensors 
653 |a inertial measurement unit 
653 |a smartphone 
653 |a accelerometry 
653 |a TUG test 
653 |a gait 
653 |a Parkinson's disease 
653 |a "dry" immersion 
653 |a arrhythmia 
653 |a artificial intelligence (AI) 
653 |a cardiac 
653 |a communication technologies 
653 |a Electrocardiogram (ECG) 
653 |a systematic literature review (SLR) 
653 |a chemical carcinogens 
653 |a machine learning 
653 |a deep learning neural network 
653 |a hybrid neural network 
653 |a convolution neural network 
653 |a fast forward neural network 
653 |a edge computing 
653 |a ANN 
653 |a microprocessor 
653 |a water level prediction 
653 |a decentralized 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7737  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/113896  |7 0  |z DOAB: description of the publication