Advanced Machine Learning Applications in Big Data Analytics

With the development of computer technology and communication technology, various industries have collected a large amount of data in different forms, so-called big data. How to obtain valuable knowledge from these data is a very challenging task. Machine learning is such a direct and effective meth...

Full description

Saved in:
Bibliographic Details
Other Authors: Li, Taiyong (Editor), Deng, Wu (Editor), Wu, Jiang (Editor)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
CNN
ELM
PSO
GM
GA
BP
NLP
KNN
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_113922
005 20230911
003 oapen
006 m o d
007 cr|mn|---annan
008 20230911s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-8487-4 
020 |a 9783036584867 
020 |a 9783036584874 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-8487-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Li, Taiyong  |4 edt 
700 1 |a Deng, Wu  |4 edt 
700 1 |a Wu, Jiang  |4 edt 
700 1 |a Li, Taiyong  |4 oth 
700 1 |a Deng, Wu  |4 oth 
700 1 |a Wu, Jiang  |4 oth 
245 1 0 |a Advanced Machine Learning Applications in Big Data Analytics 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (654 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a With the development of computer technology and communication technology, various industries have collected a large amount of data in different forms, so-called big data. How to obtain valuable knowledge from these data is a very challenging task. Machine learning is such a direct and effective method for big data analytics. In recent years, a variety of advanced machine learning technologies have emerged, and they continue to play important roles in the era of big data. Considering advanced machine learning and big data together, we have selected a series of relevant works in this Special Issue to showcase the latest research advancements in this field. Specifically, a total of thirty-three articles are included in this Special Issue, which can be roughly categorized into six groups: time series analysis, evolutionary computation, pattern recognition, computer vision, image encryption, and others. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a energy storage 
653 |a model predictive control 
653 |a peak shaving and frequency regulation 
653 |a output optimization 
653 |a global optimization 
653 |a meta-heuristic 
653 |a support vector machine swarm intelligence 
653 |a hyperspectral image classification 
653 |a CNN 
653 |a ELM 
653 |a PSO 
653 |a deep feature 
653 |a butterfly optimization algorithm 
653 |a random replacement 
653 |a crisscross search 
653 |a overseas Chinese associations 
653 |a support vector machine 
653 |a short-term traffic-flow forecasting 
653 |a bagging model 
653 |a stacking model 
653 |a ridge regression 
653 |a error coefficient 
653 |a least squares method 
653 |a support vector machines 
653 |a principal component analysis 
653 |a quick access recorder 
653 |a mean absolute error 
653 |a high-plateau flight 
653 |a event extraction 
653 |a event type 
653 |a event trigger words 
653 |a stock announcement news 
653 |a stock return 
653 |a traffic flow forecasting 
653 |a long short-term memory network 
653 |a graph convolutional network 
653 |a target detection 
653 |a infrared 
653 |a deep learning 
653 |a YOLOv5 algorithm 
653 |a design science research 
653 |a performance analysis 
653 |a machine learning 
653 |a classification algorithms 
653 |a clustering algorithms 
653 |a pilot abnormal behavior 
653 |a behavior detection 
653 |a YOLOv4 algorithm 
653 |a CBAM 
653 |a flight safety 
653 |a fault diagnosis 
653 |a variational mode decomposition 
653 |a composite multi-scale dispersion entropy 
653 |a particle swarm optimization 
653 |a deep belief network 
653 |a CBCFI 
653 |a combined prediction model 
653 |a ARMA 
653 |a GM 
653 |a GA 
653 |a BP 
653 |a hierarchical clustering 
653 |a Jaccard distance 
653 |a membership grade 
653 |a community clustering 
653 |a lightweight neural networks 
653 |a attentional mechanisms 
653 |a Hemerocallis citrina Baroni 
653 |a maturity detection 
653 |a cloud 
653 |a digital archives 
653 |a confidentiality management 
653 |a information system 
653 |a emotion-cause pair extraction 
653 |a heterogeneous graph 
653 |a graph attention network 
653 |a hierarchical model 
653 |a spatial-temporal systems 
653 |a neural networks 
653 |a information systems 
653 |a forecasting 
653 |a time series 
653 |a coupled map lattice 
653 |a polymorphic mapping 
653 |a color image 
653 |a hash function 
653 |a pixel level 
653 |a differential evolution 
653 |a capacitated vehicle routing planning 
653 |a saving mileage 
653 |a gravity search 
653 |a object detection 
653 |a computer vision 
653 |a border patrol 
653 |a COVID-19 
653 |a warning system 
653 |a PROPHET 
653 |a health 
653 |a quantum dynamics 
653 |a neural architecture search 
653 |a image classification 
653 |a swarm intelligence 
653 |a whale optimization algorithm 
653 |a extreme learning machine 
653 |a talent stability prediction 
653 |a adversarial attacks 
653 |a document classification 
653 |a NLP 
653 |a convolutional neural networks 
653 |a disease classification 
653 |a generative adversarial network 
653 |a tomato leaf 
653 |a multi-strategy 
653 |a dual-update strategy 
653 |a mean-semivariance model 
653 |a portfolio optimization 
653 |a DNA computing 
653 |a DNA sequences design 
653 |a improved matrix particle swarm optimization algorithm (IMPSO) 
653 |a opposition-based learning 
653 |a signal-to-noise ratio distance 
653 |a time series classification 
653 |a complementary ensemble empirical mode decomposition (CEEMD) 
653 |a MultiRocket 
653 |a feature selection 
653 |a hybrid model 
653 |a multi-behavior recommendation 
653 |a sequential recommendation 
653 |a graph neural network 
653 |a embedding propagation 
653 |a 1D quadratic chaotic system 
653 |a image encryption 
653 |a splicing model 
653 |a DNA coding 
653 |a BaaS system 
653 |a blockchain consensus algorithm 
653 |a KNN 
653 |a service level agreement 
653 |a transaction priority 
653 |a data stream mining 
653 |a forex 
653 |a online learning 
653 |a adaptive learning 
653 |a incremental learning 
653 |a sliding window 
653 |a concept drift 
653 |a financial time series forecasting 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7765  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/113922  |7 0  |z DOAB: description of the publication