Solving Ordinary Differential Equations in Python

This open access volume explains the foundations of modern solvers for ordinary differential equations (ODEs). Formulating and solving ODEs is an essential part of mathematical modeling and computational science, and numerous solvers are available in commercial and open source software. However, no...

Full description

Saved in:
Bibliographic Details
Main Author: Sundnes, Joakim (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2024
Series:Simula SpringerBriefs on Computing
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_121480
005 20231116
003 oapen
006 m o d
007 cr|mn|---annan
008 20231116s2024 xx |||||o ||| 0|eng d
020 |a 978-3-031-46768-4 
020 |a 9783031467684 
020 |a 9783031467677 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-031-46768-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PDE  |2 bicssc 
072 7 |a UY  |2 bicssc 
072 7 |a PB  |2 bicssc 
100 1 |a Sundnes, Joakim  |4 auth 
245 1 0 |a Solving Ordinary Differential Equations in Python 
260 |a Cham  |b Springer Nature  |c 2024 
300 |a 1 electronic resource (114 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Simula SpringerBriefs on Computing 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access volume explains the foundations of modern solvers for ordinary differential equations (ODEs). Formulating and solving ODEs is an essential part of mathematical modeling and computational science, and numerous solvers are available in commercial and open source software. However, no single ODE solver is the best choice for every single problem, and choosing the right solver requires fundamental insight into how the solvers work. This book will provide exactly that insight, to enable students and researchers to select the right solver for any ODE problem of interest, or implement their own solvers if needed. The presentation is compact and accessible, and focuses on the large and widely used class of solvers known as Runge-Kutta methods. Explicit and implicit methods are motivated and explained, as well as methods for error control and automatic time step selection, and all the solvers are implemented as a class hierarchy in Python. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Maths for scientists  |2 bicssc 
650 7 |a Computer science  |2 bicssc 
650 7 |a Mathematics  |2 bicssc 
653 |a Ordinary differential equations 
653 |a Runge-Kutta methods 
653 |a scientific programming 
653 |a Python programming 
653 |a object-oriented programming 
653 |a difference equations 
653 |a adaptive time step methods 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/85081/1/978-3-031-46768-4.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/121480  |7 0  |z DOAB: description of the publication