Evaluating Architectural Safeguards for Uncertain AI Black-Box Components
Although tremendous progress has been made in Artificial Intelligence (AI), it entails new challenges. The growing complexity of learning tasks requires more complex AI components, which increasingly exhibit unreliable behaviour. In this book, we present a model-driven approach to model architectura...
Збережено в:
Автор: | |
---|---|
Формат: | Електронний ресурс Частина з книги |
Мова: | Англійська |
Опубліковано: |
KIT Scientific Publishing
2023
|
Серія: | The Karlsruhe Series on Software Design and Quality
|
Предмети: | |
Онлайн доступ: | DOAB: download the publication DOAB: description of the publication |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Резюме: | Although tremendous progress has been made in Artificial Intelligence (AI), it entails new challenges. The growing complexity of learning tasks requires more complex AI components, which increasingly exhibit unreliable behaviour. In this book, we present a model-driven approach to model architectural safeguards for AI components and analyse their effect on the overall system reliability. |
---|---|
Фізичний опис: | 1 electronic resource (472 p.) |
ISBN: | KSP/1000161585 |
Доступ: | Open Access |