Chapter 24: Introducing the systematic science mapping framework: an innovative and mixed approach for macro scale reviews

Systematic Science Mapping (SSM) is a novel mixed methods research (MMR) design for literature reviews of large scale, thousands of publications, including entire scientific fields. SSM establishes a "big picture" view of a field's evolution, a thematic analysis of the research in a f...

Full description

Saved in:
Bibliographic Details
Main Author: Herrmann, Heinz (auth)
Format: Electronic Book Chapter
Language:English
Published: Cheltenham, UK Edward Elgar Publishing 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_128170
005 20231127
003 oapen
006 m o d
007 cr|mn|---annan
008 20231127s2023 xx |||||o ||| 0|eng d
020 |a 9781800887954.00034 
020 |a 9781800887954 
040 |a oapen  |c oapen 
024 7 |a 10.4337/9781800887954.00034  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GPS  |2 bicssc 
100 1 |a Herrmann, Heinz  |4 auth 
245 1 0 |a Chapter 24: Introducing the systematic science mapping framework: an innovative and mixed approach for macro scale reviews 
260 |a Cheltenham, UK  |b Edward Elgar Publishing  |c 2023 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Systematic Science Mapping (SSM) is a novel mixed methods research (MMR) design for literature reviews of large scale, thousands of publications, including entire scientific fields. SSM establishes a "big picture" view of a field's evolution, a thematic analysis of the research in a field, and synthesizes findings even in the presence of conceptual overlaps or inconsistencies. An overview of its roots in systematic literature reviews (SLRs) and science mapping is presented first before integrating them in a sequential mixed models design. Then, the application of SSM is illustrated in the field of responsible artificial intelligence (RAI). Evolutionary maps are presented as a tool for visualising the semantic drift of ethical principles over time. Based on "thick data", SSM shows a way of emphasising commonalities over differences for reducing the academic-to-practice gap in RAI. Guiding notes are provided to those who may wish to employ this MMR design. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a GPS  |2 bicssc 
653 |a Mixed methods research; Sequential mixed models; Systematic literature review; Science mapping; Artificial intelligence; Ethics 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://www.elgaronline.com/edcollchap-oa/book/9781800887954/book-part-9781800887954-34.xml  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/128170  |7 0  |z DOAB: description of the publication