Sustainable Energy Systems: Emerging Technologies and Practices in Renewable Energy Storage

As climate change and environmental degradation worsen, renewable energy alternatives are more needed than ever. Addressing this worldwide issue brings difficulties and opportunities. Renewable technology has a major impact on the environment and climate change, presenting promise for lowering carbo...

Full description

Saved in:
Bibliographic Details
Other Authors: Khalid, Muhammad (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_128639
005 20231130
003 oapen
006 m o d
007 cr|mn|---annan
008 20231130s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-8915-2 
020 |a 9783036589145 
020 |a 9783036589152 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-8915-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Khalid, Muhammad  |4 edt 
700 1 |a Khalid, Muhammad  |4 oth 
245 1 0 |a Sustainable Energy Systems: Emerging Technologies and Practices in Renewable Energy Storage 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (282 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a As climate change and environmental degradation worsen, renewable energy alternatives are more needed than ever. Addressing this worldwide issue brings difficulties and opportunities. Renewable technology has a major impact on the environment and climate change, presenting promise for lowering carbon emissions and global warming. Governments and organizations worldwide are creating renewable energy policies to expedite the transition to sustainable energy. This involves promoting a hydrogen economy, carbon accounting, and regional renewable installation laws. Solar, wind, biomass, and geothermal technologies are used to generate clean energy. EVs are helping renewable power systems peak-shave, load-follow, and build swappable storage stations. Advanced power electronic converters optimize renewable energy grid integration. Energy storage technologies including electrochemical, thermoelectric, and electromagnetic devices are improving renewable power system stability and resilience. Smart grids, microgrids, and machine learning are transforming renewable grids into more flexible, dependable, and self-healing ones. Renewable energy optimization, control, and forecasting are crucial for efficient energy generation and delivery. Renewable and distributed system planning, output power smoothing, and energy storage efficiency are crucial for the adoption of renewables. Load forecasting, demand response, and machine learning are changing renewable storage systems to improve power quality, grid stability, and renewable flexibility. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a demand response 
653 |a demand-side management 
653 |a energy consumption optimization 
653 |a energy efficiency 
653 |a load scheduling 
653 |a smart grid 
653 |a smart home 
653 |a virtual inertia control 
653 |a renewable energy resources 
653 |a solar and wind energy 
653 |a superconducting magnetic energy storage (SMES) 
653 |a fractional-order proportional integral (FOPI) 
653 |a frequency response 
653 |a photovoltaic 
653 |a autonomous control 
653 |a electric vehicles 
653 |a adaptive control 
653 |a maximum power point tracking 
653 |a nonsingular fast terminal sliding mode control 
653 |a permanent magnet synchronous generator 
653 |a wind-energy-conversion system 
653 |a water footprint 
653 |a agricultural product 
653 |a energy footprint 
653 |a carbon dioxide emission 
653 |a water-energy-food nexus 
653 |a grid fault restoration 
653 |a renewable microgrid 
653 |a power system stabilizer 
653 |a voltage stability 
653 |a BELBIC 
653 |a wind energy 
653 |a energy storage system 
653 |a hybrid microgrid 
653 |a nonlinear control 
653 |a power management 
653 |a solar PV generation 
653 |a wind power generation 
653 |a renewable energy sources 
653 |a power fluctuation 
653 |a energy storage systems 
653 |a selection criteria 
653 |a unit commitment 
653 |a battery energy storage systems 
653 |a wind-farm uncertainty 
653 |a distributionally robust optimization 
653 |a solar pv uncertainty 
653 |a distributed generators 
653 |a droop control 
653 |a frequency regulation 
653 |a inertia constant 
653 |a state of charge 
653 |a PSCAD/EMTDC 
653 |a fuel cell 
653 |a maximum power point 
653 |a fractional order PID 
653 |a biohydrogen 
653 |a gasification 
653 |a feedstocks 
653 |a biohydrogen production 
653 |a dark fermentation 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/8091  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/128639  |7 0  |z DOAB: description of the publication