Early Detection of Faults in Induction Motors

In modern industries, induction motors are the backbone of numerous applications, powering everything from manufacturing facilities to transportation systems. While they are known for their reliability, unexpected failures can still occur, leading to increased operational costs, facility damage, or...

Full description

Saved in:
Bibliographic Details
Other Authors: Morinigo-Sotelo, Daniel (Editor), Romero-Troncoso, Rene (Editor), Pons-Llinares, Joan (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_128847
005 20231130
003 oapen
006 m o d
007 cr|mn|---annan
008 20231130s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-9334-0 
020 |a 9783036593357 
020 |a 9783036593340 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-9334-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Morinigo-Sotelo, Daniel  |4 edt 
700 1 |a Romero-Troncoso, Rene  |4 edt 
700 1 |a Pons-Llinares, Joan  |4 edt 
700 1 |a Morinigo-Sotelo, Daniel  |4 oth 
700 1 |a Romero-Troncoso, Rene  |4 oth 
700 1 |a Pons-Llinares, Joan  |4 oth 
245 1 0 |a Early Detection of Faults in Induction Motors 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (200 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In modern industries, induction motors are the backbone of numerous applications, powering everything from manufacturing facilities to transportation systems. While they are known for their reliability, unexpected failures can still occur, leading to increased operational costs, facility damage, or service interruptions. "Early Detection and Fault Diagnosis of Induction Motors" is a comprehensive volume that compiles ten innovative journal articles focused on maintaining these machines. The papers explore a variety of techniques that introduce new ideas to the field. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a fault detection 
653 |a fault diagnosis 
653 |a frequency analysis 
653 |a induction motors 
653 |a rotating machines 
653 |a signal processing 
653 |a spectral analysis 
653 |a time-frequency decompositions 
653 |a bearing diagnosis 
653 |a early damage detection 
653 |a unlabeled learning 
653 |a deep learning 
653 |a dynamic information fusion 
653 |a induction motor 
653 |a electric machine 
653 |a machine learning 
653 |a supervised learning 
653 |a data-driven 
653 |a power connection failures 
653 |a condition monitoring 
653 |a induction machines 
653 |a negative sequence currents 
653 |a shorted turn faults 
653 |a phasor compensation 
653 |a Prony method 
653 |a broken rotor bar 
653 |a fast Fourier transform 
653 |a current signal analysis 
653 |a artificial intelligence 
653 |a early detection 
653 |a fault severity 
653 |a incipient fault 
653 |a fault-tolerant control 
653 |a AC machines 
653 |a back EMF 
653 |a feedforward compensation 
653 |a multiple coupled circuit model 
653 |a parameter identification 
653 |a fault classification 
653 |a measurement techniques 
653 |a physical variables 
653 |a signal analysis 
653 |a ITSC fault 
653 |a traction motor 
653 |a apFFT 
653 |a SVM 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/8317  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/128847  |7 0  |z DOAB: description of the publication