Bayesian Inference

The range of Bayesian inference algorithms and their different applications has been greatly expanded since the first implementation of a Kalman filter by Stanley F. Schmidt for the Apollo program. Extended Kalman filters or particle filters are just some examples of these algorithms that have been...

Full description

Saved in:
Bibliographic Details
Other Authors: Prieto Tejedor, Javier (Editor)
Format: Electronic Book Chapter
Language:English
Published: IntechOpen 2017
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_129501
005 20231201
003 oapen
006 m o d
007 cr|mn|---annan
008 20231201s2017 xx |||||o ||| 0|eng d
020 |a 66264 
020 |a 9789535135784 
020 |a 9789535135777 
020 |a 9789535146155 
040 |a oapen  |c oapen 
024 7 |a 10.5772/66264  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBT  |2 bicssc 
100 1 |a Prieto Tejedor, Javier  |4 edt 
700 1 |a Prieto Tejedor, Javier  |4 oth 
245 1 0 |a Bayesian Inference 
260 |b IntechOpen  |c 2017 
300 |a 1 electronic resource (378 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The range of Bayesian inference algorithms and their different applications has been greatly expanded since the first implementation of a Kalman filter by Stanley F. Schmidt for the Apollo program. Extended Kalman filters or particle filters are just some examples of these algorithms that have been extensively applied to logistics, medical services, search and rescue operations, or automotive safety, among others. This book takes a look at both theoretical foundations of Bayesian inference and practical implementations in different fields. It is intended as an introductory guide for the application of Bayesian inference in the fields of life sciences, engineering, and economics, as well as a source document of fundamentals for intermediate Bayesian readers. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Probability & statistics  |2 bicssc 
653 |a bayesian methods, gene expression, entrepreneurship, meta-analysis, investment, inverse problems 
856 4 0 |a www.oapen.org  |u https://mts.intechopen.com/storage/books/5964/authors_book/authors_book.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/129501  |7 0  |z DOAB: description of the publication