Memristor and Memristive Neural Networks

This book covers a range of models, circuits and systems built with memristor devices and networks in applications to neural networks. It is divided into three parts: (1) Devices, (2) Models and (3) Applications. The resistive switching property is an important aspect of the memristors, and there ar...

Full description

Saved in:
Bibliographic Details
Other Authors: Pappachen James, Alex (Editor)
Format: Electronic Book Chapter
Language:English
Published: IntechOpen 2018
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_130323
005 20231201
003 oapen
006 m o d
007 cr|mn|---annan
008 20231201s2018 xx |||||o ||| 0|eng d
020 |a 66539 
020 |a 9789535139485 
020 |a 9789535139478 
020 |a 9789535140092 
040 |a oapen  |c oapen 
024 7 |a 10.5772/66539  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYQN  |2 bicssc 
100 1 |a Pappachen James, Alex  |4 edt 
700 1 |a Pappachen James, Alex  |4 oth 
245 1 0 |a Memristor and Memristive Neural Networks 
260 |b IntechOpen  |c 2018 
300 |a 1 electronic resource (324 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This book covers a range of models, circuits and systems built with memristor devices and networks in applications to neural networks. It is divided into three parts: (1) Devices, (2) Models and (3) Applications. The resistive switching property is an important aspect of the memristors, and there are several designs of this discussed in this book, such as in metal oxide/organic semiconductor nonvolatile memories, nanoscale switching and degradation of resistive random access memory and graphene oxide-based memristor. The modelling of the memristors is required to ensure that the devices can be put to use and improve emerging application. In this book, various memristor models are discussed, from a mathematical framework to implementations in SPICE and verilog, that will be useful for the practitioners and researchers to get a grounding on the topic. The applications of the memristor models in various neuromorphic networks are discussed covering various neural network models, implementations in A/D converter and hierarchical temporal memories. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Neural networks & fuzzy systems  |2 bicssc 
653 |a neuromorphic computing, deep learning, graphene oxide, phase transition, spice, optical flow 
856 4 0 |a www.oapen.org  |u https://mts.intechopen.com/storage/books/5973/authors_book/authors_book.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/130323  |7 0  |z DOAB: description of the publication