Advances in Memristor Neural Networks Modeling and Applications

Nowadays, scientific research deals with alternative solutions for creating non-traditional computing systems, such as neural network architectures where the stochastic nature and live dynamics of memristive models play a key role. The features of memristors make it possible to direct processing and...

Full description

Saved in:
Bibliographic Details
Other Authors: Ciufudean, Calin (Editor)
Format: Electronic Book Chapter
Language:English
Published: IntechOpen 2018
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_130494
005 20231201
003 oapen
006 m o d
007 cr|mn|---annan
008 20231201s2018 xx |||||o ||| 0|eng d
020 |a intechopen.75147 
020 |a 9781789841169 
020 |a 9781789841152 
020 |a 9781838818159 
040 |a oapen  |c oapen 
024 7 |a 10.5772/intechopen.75147  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBWH  |2 bicssc 
100 1 |a Ciufudean, Calin  |4 edt 
700 1 |a Ciufudean, Calin  |4 oth 
245 1 0 |a Advances in Memristor Neural Networks  |b Modeling and Applications 
260 |b IntechOpen  |c 2018 
300 |a 1 electronic resource (124 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Nowadays, scientific research deals with alternative solutions for creating non-traditional computing systems, such as neural network architectures where the stochastic nature and live dynamics of memristive models play a key role. The features of memristors make it possible to direct processing and analysis of both biosystems and systems driven by artificial intelligence, as well as develop plausible physical models of spiking neural networks with self-organization. This book deals with advanced applications illustrating these concepts, and delivers an important contribution for the achievement of the next generation of intelligent hybrid biostructures. Different modeling and simulation tools can deliver an alternative to funding the theoretical approach as well as practical implementation of memristive systems. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Mathematical modelling  |2 bicssc 
653 |a synapse, neuromorphic computing, graphene, graphene oxide, image processing, artificial neural networks 
856 4 0 |a www.oapen.org  |u https://mts.intechopen.com/storage/books/7334/authors_book/authors_book.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/130494  |7 0  |z DOAB: description of the publication