Business Data Ethics Emerging Models for Governing AI and Advanced Analytics

This open access book explains how leading business organizations attempt to achieve the responsible and ethical use of artificial intelligence (AI) and other advanced information technologies. These technologies can produce tremendous insights and benefits. But they can also invade privacy, perpetu...

Full description

Saved in:
Bibliographic Details
Main Author: Hirsch, Dennis (auth)
Other Authors: Bartley, Timothy (auth), Chandrasekaran, Aravind (auth), Norris, Davon (auth), Parthasarathy, Srinivasan (auth), Turner, Piers Norris (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2024
Series:SpringerBriefs in Law
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_131983
005 20231214
003 oapen
006 m o d
007 cr|mn|---annan
008 20231214s2024 xx |||||o ||| 0|eng d
020 |a 978-3-031-21491-2 
020 |a 9783031214912 
020 |a 9783031214905 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-031-21491-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a LNJ  |2 bicssc 
072 7 |a LB  |2 bicssc 
072 7 |a UYQ  |2 bicssc 
072 7 |a KJG  |2 bicssc 
072 7 |a KJR  |2 bicssc 
100 1 |a Hirsch, Dennis  |4 auth 
700 1 |a Bartley, Timothy  |4 auth 
700 1 |a Chandrasekaran, Aravind  |4 auth 
700 1 |a Norris, Davon  |4 auth 
700 1 |a Parthasarathy, Srinivasan  |4 auth 
700 1 |a Turner, Piers Norris  |4 auth 
245 1 0 |a Business Data Ethics  |b Emerging Models for Governing AI and Advanced Analytics 
260 |a Cham  |b Springer Nature  |c 2024 
300 |a 1 electronic resource (101 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Law 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book explains how leading business organizations attempt to achieve the responsible and ethical use of artificial intelligence (AI) and other advanced information technologies. These technologies can produce tremendous insights and benefits. But they can also invade privacy, perpetuate bias, and otherwise injure people and society. To use these technologies successfully, organizations need to implement them responsibly and ethically. The question is: how to do this? Data ethics management, and this book, provide some answers. The authors interviewed and surveyed data ethics managers at leading companies. They asked why these experts see data ethics as important and how they seek to achieve it. This book conveys the results of that research on a concise, accessible way. Much of the existing writing on data and AI ethics focuses either on macro-level ethical principles, or on micro-level product design and tooling. The interviews showed that companies need a third component: data ethics management. This third element consists of the management structures, processes, training and substantive benchmarks that companies use to operationalize their high-level ethical principles and to guide and hold accountable their developers. Data ethics management is the connective tissue makes ethical principles real. It is the focus of this book. This book should be of use to organizations that wish to improve their own data ethics management efforts, legislators and policymakers who hope to build on existing management practices, scholars who study beyond compliance business behavior, and members of the public who want to understand better the threats that AI poses and how to reduce them. 
536 |a The Ohio State University Libraries 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Entertainment & media law  |2 bicssc 
650 7 |a International law  |2 bicssc 
650 7 |a Artificial intelligence  |2 bicssc 
650 7 |a Business ethics & social responsibility  |2 bicssc 
650 7 |a Corporate governance  |2 bicssc 
653 |a AI Ethics 
653 |a Data Ethics 
653 |a AI Ethics Management 
653 |a Responsible AI 
653 |a Governance of AI 
653 |a Responsible data science 
653 |a Ethical data science 
653 |a Ethical data analytics 
653 |a Business ethics 
653 |a Corporate social responsibility 
653 |a Risk management 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/86099/1/978-3-031-21491-2.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/131983  |7 0  |z DOAB: description of the publication