Data Analysis and Mining
The research field of data analysis and mining has attracted the interest of both academia and industry in recent years. This reprint contains 17 papers, which cover different topics of the broad research field of data analysis and mining. Each paper presents new data mining algorithms and technique...
Saved in:
Other Authors: | , |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2023
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_132388 | ||
005 | 20240108 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20240108s2023 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-9502-3 | ||
020 | |a 9783036595030 | ||
020 | |a 9783036595023 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-9502-3 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a KNTX |2 bicssc | |
100 | 1 | |a Ougiaroglou, Stefanos |4 edt | |
700 | 1 | |a Margaris, Dionisis |4 edt | |
700 | 1 | |a Ougiaroglou, Stefanos |4 oth | |
700 | 1 | |a Margaris, Dionisis |4 oth | |
245 | 1 | 0 | |a Data Analysis and Mining |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2023 | ||
300 | |a 1 electronic resource (342 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The research field of data analysis and mining has attracted the interest of both academia and industry in recent years. This reprint contains 17 papers, which cover different topics of the broad research field of data analysis and mining. Each paper presents new data mining algorithms and techniques, as well as applications of data analysis and mining in real-world domains. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Information technology industries |2 bicssc | |
653 | |a chi-square test | ||
653 | |a constrained likelihood ratio test | ||
653 | |a Fisher test | ||
653 | |a gamma distribution | ||
653 | |a uniformly most powerful test | ||
653 | |a key interested frame | ||
653 | |a commodity video | ||
653 | |a clustering | ||
653 | |a deep neural network | ||
653 | |a frequent subtree | ||
653 | |a parallel algorithms | ||
653 | |a data partitioning | ||
653 | |a load balancing | ||
653 | |a trust inference | ||
653 | |a trust propagation | ||
653 | |a online social network | ||
653 | |a social network analysis | ||
653 | |a probabilistic graphical model | ||
653 | |a message passing | ||
653 | |a belief propagation | ||
653 | |a model interpretability | ||
653 | |a sequential rule mining | ||
653 | |a non redundant sequential rules | ||
653 | |a TRuleGrowth | ||
653 | |a top-k non redundant rules | ||
653 | |a closed sequential patterns | ||
653 | |a multivariate time series | ||
653 | |a deep spatiotemporal information | ||
653 | |a down-sampling convolution | ||
653 | |a attention | ||
653 | |a graph neural network | ||
653 | |a mobility patterns | ||
653 | |a social media data | ||
653 | |a artificial intelligence | ||
653 | |a tourist clusters | ||
653 | |a tourist flows | ||
653 | |a forecasting | ||
653 | |a univariate | ||
653 | |a time series | ||
653 | |a Python | ||
653 | |a PSF | ||
653 | |a spam detection | ||
653 | |a deep learning | ||
653 | |a semantic similarity | ||
653 | |a social network security | ||
653 | |a web analytics | ||
653 | |a web log mining | ||
653 | |a clickstream analysis | ||
653 | |a sequence mining | ||
653 | |a sequitur | ||
653 | |a graph techniques | ||
653 | |a feature subset selection | ||
653 | |a data mining | ||
653 | |a educational data mining | ||
653 | |a machine learning | ||
653 | |a metaheuristics | ||
653 | |a artificial neural networks | ||
653 | |a random decision forests | ||
653 | |a posttraumatic stress disorder | ||
653 | |a DSM-V | ||
653 | |a emergency cesarean section | ||
653 | |a elective cesarean section | ||
653 | |a postpartum period | ||
653 | |a text similarity calculation | ||
653 | |a passage-level event connection graph | ||
653 | |a vector tuning | ||
653 | |a graph embedding | ||
653 | |a meteorological data mining and machine learning | ||
653 | |a class imbalance | ||
653 | |a classification | ||
653 | |a randomized undersampling | ||
653 | |a SMOTE oversampling | ||
653 | |a undersampling using temporal distances | ||
653 | |a recommender systems | ||
653 | |a session-based recommendations | ||
653 | |a e-commerce | ||
653 | |a data and web mining | ||
653 | |a item co-occurrence | ||
653 | |a graph data model | ||
653 | |a next-item and next-basket recommendations | ||
653 | |a graph-based recommendations | ||
653 | |a purchase intent | ||
653 | |a LSTM-RNN | ||
653 | |a signal processing | ||
653 | |a smart device | ||
653 | |a electromagnetic field | ||
653 | |a non-ionizing radiation protection | ||
653 | |a SAR | ||
653 | |a ANOVA | ||
653 | |a data science | ||
653 | |a selection | ||
653 | |a constraint satisfaction | ||
653 | |a preprocessing | ||
653 | |a mobile technology | ||
653 | |a statistics | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/8412 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/132388 |7 0 |z DOAB: description of the publication |