Recent Advances in Motion Planning and Control of Autonomous Vehicles

Autonomous vehicles are increasingly prevalent, navigating both structured urban roads and challenging offroad scenes. At the core of these vehicles lie the planning and control modules, which are crucial for demonstrating the intelligence inherent in an autonomous driving system. The planning modul...

Full description

Saved in:
Bibliographic Details
Other Authors: Li, Bai (Editor), Zhang, Youmin (Editor), Li, Xiaohui (Editor), Acarman, Tankut (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_132432
005 20240108
003 oapen
006 m o d
007 cr|mn|---annan
008 20240108s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-9767-6 
020 |a 9783036597669 
020 |a 9783036597676 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-9767-6  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
072 7 |a TR  |2 bicssc 
100 1 |a Li, Bai  |4 edt 
700 1 |a Zhang, Youmin  |4 edt 
700 1 |a Li, Xiaohui  |4 edt 
700 1 |a Acarman, Tankut  |4 edt 
700 1 |a Li, Bai  |4 oth 
700 1 |a Zhang, Youmin  |4 oth 
700 1 |a Li, Xiaohui  |4 oth 
700 1 |a Acarman, Tankut  |4 oth 
245 1 0 |a Recent Advances in Motion Planning and Control of Autonomous Vehicles 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (224 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Autonomous vehicles are increasingly prevalent, navigating both structured urban roads and challenging offroad scenes. At the core of these vehicles lie the planning and control modules, which are crucial for demonstrating the intelligence inherent in an autonomous driving system. The planning module is responsible for devising an open-loop trajectory, taking into account a variety of environmental restrictions, task-related demands, and vehicle-kinematics-related constraints, while the control module ensures adherence to this trajectory in a closed-loop manner. This adherence is vital in a range of conditions, including diverse weather scenarios, different driving situations, and in response to potential disturbances such as mechanical failures or cyber threats. In certain contexts, these modules are collectively referred to as 'control', with the planning component considered an open-loop controller. This Special Issue focuses on the latest research trends in planning and control methods for autonomous driving. It comprises 11 papers that cover a broad spectrum of applications, including occlusion-aware motion planning in warehouses, control strategies for articulated vehicles, cooperative trajectory planning for autonomous forklifts, and tracking control for underwater vehicles in the face of disturbances and uncertainties. These contributions collectively underscore the diverse and evolving nature of autonomous vehicle technology. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Transport technology & trades  |2 bicssc 
653 |a autonomous vehicle 
653 |a infrared positioning 
653 |a occlusion-aware path planning 
653 |a numerical optimal control 
653 |a dynamic programming 
653 |a quadratic program 
653 |a underground intelligent vehicles 
653 |a path planning 
653 |a RRT* algorithm 
653 |a articulated vehicles 
653 |a unmanned driving 
653 |a spatial exploration 
653 |a hierarchical framework 
653 |a deep reinforcement learning 
653 |a intrinsic motivation 
653 |a obstacle avoidance 
653 |a data-driven control 
653 |a time delay neural network 
653 |a drift control 
653 |a autonomous driving 
653 |a nonlinear model predictive control 
653 |a brain-computer interface (BCI) 
653 |a steady-state visual evoked potential (SSVEP) 
653 |a electroencephalography (EEG) 
653 |a threatening pedestrians 
653 |a eye-tracking 
653 |a automated vehicle 
653 |a trajectory planning 
653 |a narrow corridor scene 
653 |a space discretization strategy 
653 |a articulated tracked vehicle 
653 |a adaptive model predictive control 
653 |a Hybrid A-star 
653 |a trajectory tracking 
653 |a kinematics 
653 |a improved A* algorithm 
653 |a GIS 
653 |a open-pit mine 
653 |a autonomous truck 
653 |a scheduling 
653 |a artificial bee colony algorithm 
653 |a autonomous forklift 
653 |a cooperative trajectory planning 
653 |a joint dispatching and planning 
653 |a Hybrid A* search algorithm 
653 |a artificial neural network 
653 |a autonomous underwater vehicle 
653 |a tube model predictive control 
653 |a path tracking 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/8469  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/132432  |7 0  |z DOAB: description of the publication