Novel Applications of Optical Sensors and Machine Learning in Agricultural Monitoring

Agricultural production management is facing a new era of intelligence and automation. With developments in sensor technologies, the temporal, spectral, and spatial resolution from ground/air/space platforms have been notably improved. Optical sensors play an essential role in agriculture production...

Full description

Saved in:
Bibliographic Details
Other Authors: Yue, Jibo (Editor), Zhou, Chengquan (Editor), Feng, Haikuan (Editor), Yang, Yanjun (Editor), Zhang, Ning (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_132444
005 20240108
003 oapen
006 m o d
007 cr|mn|---annan
008 20240108s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-9799-7 
020 |a 9783036597980 
020 |a 9783036597997 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-9799-7  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Yue, Jibo  |4 edt 
700 1 |a Zhou, Chengquan  |4 edt 
700 1 |a Feng, Haikuan  |4 edt 
700 1 |a Yang, Yanjun  |4 edt 
700 1 |a Zhang, Ning  |4 edt 
700 1 |a Yue, Jibo  |4 oth 
700 1 |a Zhou, Chengquan  |4 oth 
700 1 |a Feng, Haikuan  |4 oth 
700 1 |a Yang, Yanjun  |4 oth 
700 1 |a Zhang, Ning  |4 oth 
245 1 0 |a Novel Applications of Optical Sensors and Machine Learning in Agricultural Monitoring 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (310 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Agricultural production management is facing a new era of intelligence and automation. With developments in sensor technologies, the temporal, spectral, and spatial resolution from ground/air/space platforms have been notably improved. Optical sensors play an essential role in agriculture production management. Specifically, monitoring plant health, growth conditions, and insect infestation has traditionally involved extensive fieldwork. We believe that sensors, artificial intelligence, and machine learning are not simply scientific experiments but opportunities to make our agricultural production management more efficient and cost-effective, further contributing to the healthy development of natural-human systems. This reprint compiles the latest research on optical sensors and machine learning in agricultural monitoring, including related topics: Machine learning approaches for crop health, growth, and yield monitoring; Combined multisource/multi-sensor data to improve the crop parameters mapping; Crop-related growth models, artificial intelligence models, algorithms, and precision management; Farmland environmental monitoring and management; Ground, air, and space platforms application in precision agriculture; Development and application of field robotics; High-throughput field information survey; Phenological monitoring. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a soil moisture content 
653 |a spectral processing technology 
653 |a hyperspectral 
653 |a principal component analysis 
653 |a feature parameters extraction 
653 |a yield estimation 
653 |a rice 
653 |a unmanned aerial vehicle (UAV) 
653 |a tasseled cap transformation 
653 |a precision agriculture 
653 |a weed identification 
653 |a YOLOv4-Tiny 
653 |a attention mechanism 
653 |a multiscale detection 
653 |a angle normalization 
653 |a vegetation canopy reflectance 
653 |a geostationary satellite 
653 |a path length correction 
653 |a Minnaert model 
653 |a GOCI 
653 |a winter wheat 
653 |a LSTM 
653 |a LAI 
653 |a deep learning 
653 |a land use 
653 |a land cover 
653 |a classification 
653 |a random forest 
653 |a Sentinel data 
653 |a SRTM 
653 |a feature selection 
653 |a accuracy 
653 |a validation 
653 |a unmanned aerial vehicle 
653 |a soybean 
653 |a convolutional neural network 
653 |a multispectral imagery 
653 |a fusarium head blight 
653 |a texture indices 
653 |a machine learning 
653 |a cropland 
653 |a multi-seasonal 
653 |a fractal feature 
653 |a feature extraction 
653 |a accuracy evaluation 
653 |a black soil 
653 |a UAV 
653 |a chlorophyll 
653 |a fractional vegetation cover 
653 |a maturity monitoring 
653 |a anomaly detection 
653 |a smart agriculture 
653 |a detection of apple leaf diseases 
653 |a YOLOv5 
653 |a transformer 
653 |a CBAM 
653 |a crop type classification 
653 |a multi-temporal 
653 |a remote sensing 
653 |a dairy cows 
653 |a body condition score 
653 |a 3D TOF sensor 
653 |a non-contact evaluation 
653 |a recognize area of interest 
653 |a sugarcane clones 
653 |a canopy cover 
653 |a light interception 
653 |a biomass 
653 |a cane yield 
653 |a peanut southern blight 
653 |a reflection spectrum 
653 |a spectral index 
653 |a continuous wavelet transform 
653 |a VGNet 
653 |a corn diseases 
653 |a leaf detection 
653 |a lightweight 
653 |a transfer learning 
653 |a agriculture 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/8482  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/132444  |7 0  |z DOAB: description of the publication