Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources

The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relation...

Olles dieđut

Furkejuvvon:
Bibliográfalaš dieđut
Váldodahkki: Wohlgenannt, Gerhard (auth)
Materiálatiipa: Elektrovnnalaš Girjji oassi
Giella:eaŋgalasgiella
Almmustuhtton: Bern Peter Lang International Academic Publishing Group 2018
Ráidu:Forschungsergebnisse der Wirtschaftsuniversitaet Wien
Fáttát:
Liŋkkat:DOAB: download the publication
DOAB: description of the publication
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
Govvádus
Čoahkkáigeassu:The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relations. It combines corpus-based techniques with reasoning on Semantic Web data. Corpus-based methods apply vector space similarity of verbs co-occurring with labeled and unlabeled relations to calculate relation label suggestions from a set of candidates. A meta ontology in combination with Semantic Web sources such as DBpedia and OpenCyc allows reasoning to improve the suggested labels. An extensive formal evaluation demonstrates the superior accuracy of the presented hybrid approach.
Olgguldas hápmi:1 electronic resource (222 p.)
ISBN:b13903
9783631753842
Beassan:Open Access