Fundamentals of Clinical Data Science

This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related p...

Full description

Saved in:
Bibliographic Details
Other Authors: Kubben, Pieter (Editor), Dumontier, Michel (Editor), Dekker, Andre (Editor)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2019
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book's promise is "no math, no code"and will explain the topics in a style that is optimized for a healthcare audience.
Physical Description:1 electronic resource (219 p.)
ISBN:978-3-319-99713-1
Access:Open Access