Graphs for Pattern Recognition Infeasible Systems of Linear Inequalities

This monograph deals with mathematical constructions that are foundational in such an important area of data mining as pattern recognition. By using combinatorial and graph theoretic techniques, a closer look is taken at infeasible systems of linear inequalities, whose generalized solutions act as b...

Full description

Saved in:
Bibliographic Details
Main Author: Gainanov, Damir (auth)
Format: Electronic Book Chapter
Language:English
Published: De Gruyter 2016
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_30837
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2016 xx |||||o ||| 0|eng d
020 |a /doi.org/10.1515/9783110481068 
020 |a 9783110481068 
040 |a oapen  |c oapen 
024 7 |a https://doi.org/10.1515/9783110481068  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYQV  |2 bicssc 
072 7 |a TV  |2 bicssc 
100 1 |a Gainanov, Damir  |4 auth 
245 1 0 |a Graphs for Pattern Recognition  |b Infeasible Systems of Linear Inequalities 
260 |b De Gruyter  |c 2016 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This monograph deals with mathematical constructions that are foundational in such an important area of data mining as pattern recognition. By using combinatorial and graph theoretic techniques, a closer look is taken at infeasible systems of linear inequalities, whose generalized solutions act as building blocks of geometric decision rules for pattern recognition.Infeasible systems of linear inequalities prove to be a key object in pattern recognition problems described in geometric terms thanks to the committee method. Such infeasible systems of inequalities represent an important special subclass of infeasible systems of constraints with a monotonicity property - systems whose multi-indices of feasible subsystems form abstract simplicial complexes (independence systems), which are fundamental objects of combinatorial topology.The methods of data mining and machine learning discussed in this monograph form the foundation of technologies like big data and deep learning, which play a growing role in many areas of human-technology interaction and help to find solutions, better solutions and excellent solutions. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
546 |a English 
650 7 |a Computer vision  |2 bicssc 
650 7 |a Agriculture & farming  |2 bicssc 
653 |a Computers 
653 |a Artificial Intelligence 
653 |a Computer Vision & Pattern Recognition 
653 |a Technology & Engineering 
653 |a Agriculture 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/46036/1/external_content.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/46036/1/external_content.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/30837  |7 0  |z DOAB: description of the publication