Automated Machine Learning Methods, Systems, Challenges

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial...

Full description

Saved in:
Bibliographic Details
Other Authors: Hutter, Frank (Editor), Kotthoff, Lars (Editor), Vanschoren, Joaquin (Editor)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2019
Series:The Springer Series on Challenges in Machine Learning
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_31379
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2019 xx |||||o ||| 0|eng d
020 |a 978-3-030-05318-5 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-030-05318-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYQ  |2 bicssc 
072 7 |a UYQP  |2 bicssc 
072 7 |a UYT  |2 bicssc 
100 1 |a Hutter, Frank  |4 edt 
700 1 |a Kotthoff, Lars  |4 edt 
700 1 |a Vanschoren, Joaquin  |4 edt 
700 1 |a Hutter, Frank  |4 oth 
700 1 |a Kotthoff, Lars  |4 oth 
700 1 |a Vanschoren, Joaquin  |4 oth 
245 1 0 |a Automated Machine Learning  |b Methods, Systems, Challenges 
260 |a Cham  |b Springer Nature  |c 2019 
300 |a 1 electronic resource (219 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The Springer Series on Challenges in Machine Learning 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0  |2 cc  |4 https://creativecommons.org/licenses/by/4.0 
546 |a English 
650 7 |a Artificial intelligence  |2 bicssc 
650 7 |a Pattern recognition  |2 bicssc 
650 7 |a Image processing  |2 bicssc 
653 |a Computer science 
653 |a Artificial intelligence 
653 |a Optical data processing 
653 |a Pattern recognition 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/23012/1/1007149.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/31379  |7 0  |z DOAB: description of the publication