Bayesian Methods for Statistical Analysis

Bayesian methods for statistical analysis is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical m...

Full description

Saved in:
Bibliographic Details
Main Author: Puza, Borek (auth)
Format: Electronic Book Chapter
Language:English
Published: ANU Press 2015
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_32870
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2015 xx |||||o ||| 0|eng d
020 |a OAPEN_611011 
020 |a 9781921934254 
040 |a oapen  |c oapen 
024 7 |a 10.26530/OAPEN_611011  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PB  |2 bicssc 
072 7 |a PBT  |2 bicssc 
072 7 |a PBTB  |2 bicssc 
100 1 |a Puza, Borek  |4 auth 
245 1 0 |a Bayesian Methods for Statistical Analysis 
260 |b ANU Press  |c 2015 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Bayesian methods for statistical analysis is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical models, Markov chain Monte Carlo methods, finite population inference, biased sampling and nonignorable nonresponse. The book contains many exercises, all with worked solutions, including complete computer code. It is suitable for self-study or a semester-long course, with three hours of lectures and one tutorial per week for 13 weeks. 
540 |a All rights reserved  |4 http://oapen.org/content/about-rights 
546 |a English 
650 7 |a Mathematics  |2 bicssc 
650 7 |a Probability & statistics  |2 bicssc 
650 7 |a Bayesian inference  |2 bicssc 
653 |a statistics 
653 |a mathematics 
653 |a bayesian inference 
653 |a probability 
653 |a Algorithm 
653 |a Confidence interval 
653 |a Histogram 
653 |a Monte Carlo method 
653 |a Posterior probability 
653 |a Sampling (statistics) 
653 |a WinBUGS 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/32424/1/611011.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/32424/1/611011.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/32424/1/611011.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/32424/1/611011.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/32870  |7 0  |z DOAB: description of the publication