Representation Learning for Natural Language Processing

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including word...

Full description

Saved in:
Bibliographic Details
Main Author: Liu, Zhiyuan (auth)
Other Authors: Lin, Yankai (auth), Sun, Maosong (auth)
Format: Electronic Book Chapter
Language:English
Published: Springer Nature 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_35038
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2020 xx |||||o ||| 0|eng d
020 |a 978-981-15-5573-2 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-981-15-5573-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYQL  |2 bicssc 
072 7 |a CFX  |2 bicssc 
072 7 |a UYQ  |2 bicssc 
072 7 |a UNF  |2 bicssc 
100 1 |a Liu, Zhiyuan  |4 auth 
700 1 |a Lin, Yankai  |4 auth 
700 1 |a Sun, Maosong  |4 auth 
245 1 0 |a Representation Learning for Natural Language Processing 
260 |b Springer Nature  |c 2020 
300 |a 1 electronic resource (334 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Natural language & machine translation  |2 bicssc 
650 7 |a Computational linguistics  |2 bicssc 
650 7 |a Artificial intelligence  |2 bicssc 
650 7 |a Data mining  |2 bicssc 
653 |a Natural Language Processing (NLP) 
653 |a Computational Linguistics 
653 |a Artificial Intelligence 
653 |a Data Mining and Knowledge Discovery 
653 |a Open Access 
653 |a Deep Learning 
653 |a Representation Learning 
653 |a Knowledge Representation 
653 |a Word Representation 
653 |a Document Representation 
653 |a Big Data 
653 |a Machine Learning 
653 |a Natural Language Processing 
653 |a Natural language & machine translation 
653 |a Computational linguistics 
653 |a Artificial intelligence 
653 |a Data mining 
653 |a Expert systems / knowledge-based systems 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/39974/1/2020_Book_RepresentationLearningForNatur.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/35038  |7 0  |z DOAB: description of the publication