Spectral Feature Selection for Data Mining
This timely introduction to spectral feature selection illustrates the potential of this powerful dimensionality reduction technique in high-dimensional data processing. It presents the theoretical foundations of spectral feature selection, its connections to other algorithms, and its use in handlin...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Taylor & Francis
2012
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This timely introduction to spectral feature selection illustrates the potential of this powerful dimensionality reduction technique in high-dimensional data processing. It presents the theoretical foundations of spectral feature selection, its connections to other algorithms, and its use in handling both large-scale data sets and small sample problems. Readers learn how to use spectral feature selection to solve challenging problems in real-life applications and discover how general feature selection and extraction are connected to spectral feature selection. Source code for the algorithms is available online. |
---|---|
ISBN: | b11426 9781439862094 |
Access: | Open Access |