Spectral Feature Selection for Data Mining
This timely introduction to spectral feature selection illustrates the potential of this powerful dimensionality reduction technique in high-dimensional data processing. It presents the theoretical foundations of spectral feature selection, its connections to other algorithms, and its use in handlin...
Bewaard in:
Hoofdauteur: | |
---|---|
Andere auteurs: | |
Formaat: | Elektronisch Hoofdstuk |
Taal: | Engels |
Gepubliceerd in: |
Taylor & Francis
2012
|
Onderwerpen: | |
Online toegang: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_36827 | ||
005 | 20210210 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210210s2012 xx |||||o ||| 0|eng d | ||
020 | |a b11426 | ||
020 | |a 9781439862094 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.1201/b11426 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a UNF |2 bicssc | |
100 | 1 | |a Zhao, Zheng Alan |4 auth | |
700 | 1 | |a Liu, Huan |4 auth | |
245 | 1 | 0 | |a Spectral Feature Selection for Data Mining |
260 | |b Taylor & Francis |c 2012 | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a This timely introduction to spectral feature selection illustrates the potential of this powerful dimensionality reduction technique in high-dimensional data processing. It presents the theoretical foundations of spectral feature selection, its connections to other algorithms, and its use in handling both large-scale data sets and small sample problems. Readers learn how to use spectral feature selection to solve challenging problems in real-life applications and discover how general feature selection and extraction are connected to spectral feature selection. Source code for the algorithms is available online. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode |2 cc |4 https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode | ||
546 | |a English | ||
650 | 7 | |a Data mining |2 bicssc | |
653 | |a Computer Science | ||
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/20.500.12657/25274/1/1004820.pdf |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/20.500.12657/25274/1/1004820.pdf |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/20.500.12657/25274/1/1004820.pdf |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/20.500.12657/25274/1/1004820.pdf |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/36827 |7 0 |z DOAB: description of the publication |