An Invitation to Statistics in Wasserstein Space

This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundame...

Full description

Saved in:
Bibliographic Details
Main Author: Panaretos, Victor M. (auth)
Other Authors: Zemel, Yoav (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2020
Series:SpringerBriefs in Probability and Mathematical Statistics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_37237
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2020 xx |||||o ||| 0|eng d
020 |a 978-3-030-38438-8 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-030-38438-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBT  |2 bicssc 
100 1 |a Panaretos, Victor M.  |4 auth 
700 1 |a Zemel, Yoav  |4 auth 
245 1 0 |a An Invitation to Statistics in Wasserstein Space 
260 |a Cham  |b Springer Nature  |c 2020 
300 |a 1 electronic resource (147 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Probability and Mathematical Statistics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds). The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes). Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph. ; Gives a succinct introduction to necessary mathematical background, focusing on the results useful for statistics from an otherwise vast mathematical literature. Presents an up to date overview of the state of the art, including some original results, and discusses open problems. Suitable for self-study or to be used as a graduate level course text. Open access. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Probability & statistics  |2 bicssc 
653 |a Probability Theory and Stochastic Processes 
653 |a Optimal Transportation 
653 |a Monge-Kantorovich Problem 
653 |a Barycenter 
653 |a Multimarginal Transport 
653 |a Functional Data Analysis 
653 |a Point Processes 
653 |a Random Measures 
653 |a Manifold Statistics 
653 |a Open Access 
653 |a Geometrical statistics 
653 |a Wasserstein metric 
653 |a Fréchet mean 
653 |a Procrustes analysis 
653 |a Phase variation 
653 |a Gradient descent 
653 |a Probability & statistics 
653 |a Stochastics 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/37704/1/2020_Book_AnInvitationToStatisticsInWass.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/37237  |7 0  |z DOAB: description of the publication