Advances in Mechanical Systems Dynamics

Modern dynamics was established many centuries ago by Galileo and Newton before the beginning of the industrial era. Presently, we are in the presence of the fourth industrial revolution, and mechanical systems are increasingly being integrated with electronic, electrical, and fluidic systems. This...

Full description

Saved in:
Bibliographic Details
Main Author: Massaro, Matteo (auth)
Other Authors: Boschetti, Giovanni (auth), Doria, Alberto (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_40306
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-189-3 
020 |a 9783039281893 
020 |a 9783039281886 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-189-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Massaro, Matteo  |4 auth 
700 1 |a Boschetti, Giovanni  |4 auth 
700 1 |a Doria, Alberto  |4 auth 
245 1 0 |a Advances in Mechanical Systems Dynamics 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (236 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Modern dynamics was established many centuries ago by Galileo and Newton before the beginning of the industrial era. Presently, we are in the presence of the fourth industrial revolution, and mechanical systems are increasingly being integrated with electronic, electrical, and fluidic systems. This trend is present not only in the industrial environment, which will soon be characterized by the cyber-physical systems of industry 4.0, but also in other environments like mobility, health and bio-engineering, food and natural resources, safety, and sustainable living. In this context, purely mechanical systems with quasi-static behavior will become less common and the state-of-the-art will soon be represented by integrated mechanical systems, which need accurate dynamic models to predict their behavior. Therefore, mechanical system dynamics are going to play an increasingly central role. Significant research efforts are needed to improve the identification of the mechanical properties of systems in order to develop models that take non-linearity into account, and to develop efficient simulation tools. This Special Issue aims at disseminating the latest research achievements, findings, and ideas in mechanical systems dynamics, with particular emphasis on applications that are strongly integrated with other systems and require a multi-physical approach. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a n/a 
653 |a pitch angle 
653 |a Method of Multiple Time-Scales 
653 |a lumped parameters model 
653 |a simulation 
653 |a dynamical characteristic 
653 |a dynamics 
653 |a unsteady flow control 
653 |a driving mechanism 
653 |a damper force 
653 |a optimization 
653 |a relative displacement 
653 |a bladed disc's rotation 
653 |a energy efficiency 
653 |a ground-based laser communication turntable 
653 |a landing gear 
653 |a quasi-sliding mode domain (QSMD) 
653 |a variable compression ratio 
653 |a dynamic characteristics 
653 |a inner wheel lifting 
653 |a trot gait 
653 |a vortex dynamics 
653 |a emergency extension 
653 |a natural dynamics 
653 |a high-speed locomotion 
653 |a under-platform damper 
653 |a reliability sensitivity analysis 
653 |a seeder dynamics 
653 |a natural motion 
653 |a Detached-Eddy Simulation 
653 |a sliding mode control (SMC) 
653 |a obstacle avoidance 
653 |a active tilting 
653 |a robotic system 
653 |a switched reluctance motor 
653 |a cyclic-symmetric systems dynamics 
653 |a low-speed stability 
653 |a vibration prediction 
653 |a mesh stiffness 
653 |a compositive motion 
653 |a mixture of models 
653 |a leg trajectory planning 
653 |a trajectory planning 
653 |a motorcycle dynamics 
653 |a multi-physics modelling 
653 |a reaching law 
653 |a rider control 
653 |a energy saving 
653 |a quadruped robots 
653 |a separation flow 
653 |a balancing 
653 |a personal mobility vehicle 
653 |a chatter-free 
653 |a time-variant parameters 
653 |a simulation model 
653 |a mathematical model 
653 |a forced response 
653 |a motion capture sensor 
653 |a adjustable hydraulic volume 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2025  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/40306  |7 0  |z DOAB: description of the publication