Advances in Organic Conductors and Superconductors

ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. Crystalline conductors and superconductors based on organic molecules are a rapidly progressing field of solid-state science, comprising che...

Full description

Saved in:
Bibliographic Details
Main Author: Martin Dressel (Ed.) (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2018
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_40327
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2018 xx |||||o ||| 0|eng d
020 |a books978-3-03897-181-8 
020 |a 9783038971818 
020 |a 9783038971801 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03897-181-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PN  |2 bicssc 
100 1 |a Martin Dressel (Ed.)  |4 auth 
245 1 0 |a Advances in Organic Conductors and Superconductors 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2018 
300 |a 1 electronic resource (344 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. Crystalline conductors and superconductors based on organic molecules are a rapidly progressing field of solid-state science, comprising chemists, and experimental and theoretical physicists from all around the world. In focus are solids with electronic properties governed by delocalized π-electrons. Although carbon-based materials of various shades have gained enormous interest in recent years, charge transfer salts are still paradigmatic in this field. Progress in molecular design is achieved via tiny but ingenious modifications, as well as by fundamentally different approaches. The wealth of exciting physical phenomena is unprecedented and could not have been imagined when the field took off almost half a century ago. Organic low-dimensional conductors are prime examples of Luttinger liquids, exhibit a tendency toward Fermi surface instabilities, but can also be tuned across a dimension¬a¬lity-driven phase diagram like no other system. Superconductivity comes at the border to ordered phases in the spin and charge sectors, and, at high fields, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is well established. The interplay between charge and magnetic order is still under debate, but electronic ferroelectricity is well established. After decades of intense search, the spin liquid state was first discovered in organic conductors when the amount of geometrical frustration and electronic correlations is just right. They drive the metal and superconductor into an insulating Mott state, solely via electron-electron interactions. However, what do we know about the effect of disorder? Can we tune the electronic properties by pressure, by light, or by field? Research is still addressing basic questions, but devices are not out of reach. These are currently open questions, as well as hot and timely topics. The present Special Issue on "Advances in Organic Conductors and Superconductors" provides a status report summarizing the progress achieved in the last five years. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Chemistry  |2 bicssc 
653 |a disorder 
653 |a unconventional superconductor 
653 |a Mott insulator 
653 |a molecular conductors 
653 |a quantum spin liquids 
653 |a low-dimensional conductors 
856 4 0 |a www.oapen.org  |u https://www.mdpi.com/books/pdfview/book/768  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/40327  |7 0  |z DOAB: description of the publication