Advances in Polyhydroxyalkanoate (PHA) Production, Volume 2

Nowadays, we are witnessing highly dynamic research activities related to the intriguing field of biodegradable materials with plastic-like properties. These activities are stimulated by the strengthened public awareness of prevailing ecological issues connected to growing piles of plastic waste and...

Full description

Saved in:
Bibliographic Details
Main Author: Koller, Martin (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_40339
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-641-6 
020 |a 9783039286416 
020 |a 9783039286409 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-641-6  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TCB  |2 bicssc 
100 1 |a Koller, Martin  |4 auth 
245 1 0 |a Advances in Polyhydroxyalkanoate (PHA) Production, Volume 2 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (202 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Nowadays, we are witnessing highly dynamic research activities related to the intriguing field of biodegradable materials with plastic-like properties. These activities are stimulated by the strengthened public awareness of prevailing ecological issues connected to growing piles of plastic waste and increasing greenhouse gas emissions; this goes hand-in-hand with the ongoing depletion of fossil feedstocks, which are traditionally used to produce full carbon backbone polymers. Polyhydroxyalkanoate (PHA) biopolyesters, a family of plastic-like materials with versatile material properties, are increasing considered to be a future-oriented solution for diminishing these concerns. PHA production is based on renewable resources and occurs in a bio-mediated fashion through the action of living organisms. If accomplished in an optimized way, PHA production and the entire PHA lifecycle are embedded into nature´s closed cycles of carbon. Sustainable and efficient PHA production requires understanding and improvement of all the individual process steps. Holistic improvement of PHA production, applicable on an industrially relevant scale, calls for, inter alia, consolidated knowledge about the enzymatic and genetic particularities of PHA-accumulating organisms, an in-depth understanding of the kinetics of the bioprocess, the selection of appropriate inexpensive fermentation feedstocks, tailoring of PHA composition at the level of its monomeric constituents, optimized biotechnological engineering, and novel strategies for PHA recovery from biomass characterized by low energy and chemical requirements. This Special Issue represents a comprehensive compilation of articles in which these individual aspects have been addressed by globally recognized experts. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Biotechnology  |2 bicssc 
653 |a Cupriavidus necator 
653 |a alginate 
653 |a tissue engineering 
653 |a PAT 
653 |a simulation 
653 |a terpolyester 
653 |a high cell density cultivation 
653 |a process simulation 
653 |a selective laser sintering 
653 |a gaseous substrates 
653 |a microaerophilic 
653 |a in-line monitoring 
653 |a Pseudomonas sp. 
653 |a additive manufacturing 
653 |a fed-batch 
653 |a terpolymer 
653 |a on-line 
653 |a bubble column bioreactor 
653 |a biopolymer 
653 |a fused deposition modeling 
653 |a biomaterials 
653 |a polyhydroxyalkanoate (PHA) 
653 |a Pseudomonas putida 
653 |a fed-batch fermentation 
653 |a blends 
653 |a upstream processing 
653 |a wound healing 
653 |a activated charcoal 
653 |a downstream processing 
653 |a Archaea 
653 |a polyhydroxyalkanoates processing 
653 |a film 
653 |a bioreactor 
653 |a medium-chain-length polyhydroxyalkanoate (mcl-PHA) 
653 |a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) 
653 |a Ralstonia eutropha 
653 |a hydrolysate detoxification 
653 |a extremophiles 
653 |a Poly(3-hydroxybutyrate) 
653 |a process analytical technologies 
653 |a PHA composition 
653 |a COMSOL 
653 |a non-Newtonian fluid 
653 |a tequila bagasse 
653 |a biopolyester 
653 |a biosurfactants 
653 |a Haloferax 
653 |a PHA 
653 |a phenolic compounds 
653 |a polyhydroxybutyrate 
653 |a PHB 
653 |a in-line 
653 |a Pseudomonas 
653 |a haloarchaea 
653 |a plant oil 
653 |a PHA processing 
653 |a bioeconomy 
653 |a delivery system 
653 |a P(3HB-co-3HV-co-4HB) 
653 |a productivity 
653 |a electrospinning 
653 |a cyanobacteria 
653 |a waste streams 
653 |a polyhydroxyalkanoates 
653 |a oxygen transfer 
653 |a polyhydroxyalkanoate 
653 |a biomedical application 
653 |a photon density wave spectroscopy 
653 |a carbon dioxide 
653 |a salinity 
653 |a PDW 
653 |a rheology 
653 |a halophiles 
653 |a feedstocks 
653 |a high-cell-density fed-batch 
653 |a biomedicine 
653 |a process engineering 
653 |a bioprocess design 
653 |a viscosity 
653 |a computer-aided wet-spinning 
653 |a microorganism 
653 |a Cupriavidus malaysiensis 
653 |a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHVB) 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2288  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/40339  |7 0  |z DOAB: description of the publication