Advances in Quantitative Remote Sensing in China - In Memory of Prof. Xiaowen Li

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and ot...

Full description

Saved in:
Bibliographic Details
Main Author: Shi, Jiancheng (auth)
Other Authors: Liang, Shunlin (auth), Yan, Guangjian (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
GPP
SIF
NPP
VPM
n/a
CMA
LAI
SPI
NIR
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_40344
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2019 xx |||||o ||| 0|eng d
020 |a books978-3-03897-277-8 
020 |a 9783038972761 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03897-277-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a RG  |2 bicssc 
100 1 |a Shi, Jiancheng  |4 auth 
700 1 |a Liang, Shunlin  |4 auth 
700 1 |a Yan, Guangjian  |4 auth 
245 1 0 |a Advances in Quantitative Remote Sensing in China - In Memory of Prof. Xiaowen Li 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (404 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Geography  |2 bicssc 
653 |a gross primary production (GPP) 
653 |a interference filter 
653 |a Visible Infrared Imaging Radiometer Suite (VIIRS) 
653 |a cost-efficient 
653 |a precipitation 
653 |a topographic effects 
653 |a land surface temperature 
653 |a Land surface emissivity 
653 |a scale effects 
653 |a spatial-temporal variations 
653 |a statistics methods 
653 |a inter-annual variation 
653 |a spatial representativeness 
653 |a FY-3C/MERSI 
653 |a sunphotometer 
653 |a PROSPECT 
653 |a passive microwave 
653 |a flux measurements 
653 |a urban scale 
653 |a vegetation dust-retention 
653 |a multiple ecological factors 
653 |a leaf age 
653 |a standard error of the mean 
653 |a LUT method 
653 |a spectra 
653 |a SURFRAD 
653 |a Land surface temperature 
653 |a aboveground biomass 
653 |a uncertainty 
653 |a land surface variables 
653 |a copper 
653 |a Northeast China 
653 |a forest disturbance 
653 |a end of growing season (EOS) 
653 |a random forest model 
653 |a probability density function 
653 |a downward shortwave radiation 
653 |a machine learning 
653 |a MODIS products 
653 |a composite slope 
653 |a daily average value 
653 |a canopy reflectance 
653 |a spatiotemporal representative 
653 |a light use efficiency 
653 |a hybrid method 
653 |a disturbance index 
653 |a quantitative remote sensing inversion 
653 |a SCOPE 
653 |a GPP 
653 |a South China's 
653 |a anisotropic reflectance 
653 |a vertical structure 
653 |a snow cover 
653 |a land cover change 
653 |a start of growing season (SOS) 
653 |a MS-PT algorithm 
653 |a aerosol 
653 |a pixel unmixing 
653 |a HiWATER 
653 |a algorithmic assessment 
653 |a surface radiation budget 
653 |a latitudinal pattern 
653 |a ICESat GLAS 
653 |a vegetation phenology 
653 |a SIF 
653 |a metric comparison 
653 |a Antarctica 
653 |a spatial heterogeneity 
653 |a comprehensive field experiment 
653 |a reflectance model 
653 |a sinusoidal method 
653 |a NDVI 
653 |a BRDF 
653 |a cloud fraction 
653 |a NPP 
653 |a VPM 
653 |a China 
653 |a dense forest 
653 |a vegetation remote sensing 
653 |a <i>Cunninghamia</i> 
653 |a high resolution 
653 |a geometric-optical model 
653 |a phenology 
653 |a LiDAR 
653 |a ZY-3 MUX 
653 |a point cloud 
653 |a multi-scale validation 
653 |a Fraunhofer Line Discrimination (FLD) 
653 |a rice 
653 |a fractional vegetation cover (FVC) 
653 |a interpolation 
653 |a high-resolution freeze/thaw 
653 |a drought 
653 |a Synthetic Aperture Radar (SAR) 
653 |a controlling factors 
653 |a sampling design 
653 |a downscaling 
653 |a n/a 
653 |a Chinese fir 
653 |a MRT-based model 
653 |a RADARSAT-2 
653 |a northern China 
653 |a leaf area density 
653 |a potential evapotranspiration 
653 |a black-sky albedo (BSA) 
653 |a decision tree 
653 |a CMA 
653 |a fluorescence quantum efficiency in dark-adapted conditions (FQE) 
653 |a surface solar irradiance 
653 |a validation 
653 |a geographical detector model 
653 |a vertical vegetation stratification 
653 |a spatiotemporal distribution and variation 
653 |a gap fraction 
653 |a phenological parameters 
653 |a spatio-temporal 
653 |a albedometer 
653 |a variability 
653 |a GLASS 
653 |a gross primary productivity (GPP) 
653 |a EVI2 
653 |a machine learning algorithms 
653 |a latent heat 
653 |a GLASS LAI time series 
653 |a boreal forest 
653 |a leaf 
653 |a maize 
653 |a heterogeneity 
653 |a temperature profiles 
653 |a crop-growing regions 
653 |a satellite observations 
653 |a rugged terrain 
653 |a species richness 
653 |a voxel 
653 |a LAI 
653 |a TMI data 
653 |a GF-1 WFV 
653 |a spectral 
653 |a HJ-1 CCD 
653 |a leaf area index 
653 |a evapotranspiration 
653 |a land-surface temperature products (LSTs) 
653 |a SPI 
653 |a AVHRR 
653 |a Tibetan Plateau 
653 |a snow-free albedo 
653 |a PROSPECT-5B+SAILH (PROSAIL) model 
653 |a MCD43A3 C6 
653 |a 3D reconstruction 
653 |a photoelectric detector 
653 |a multi-data set 
653 |a BEPS 
653 |a aerosol retrieval 
653 |a plant functional type 
653 |a multisource data fusion 
653 |a remote sensing 
653 |a leaf spectral properties 
653 |a solo slope 
653 |a land surface albedo 
653 |a longwave upwelling radiation (LWUP) 
653 |a terrestrial LiDAR 
653 |a AMSR2 
653 |a geometric optical radiative transfer (GORT) model 
653 |a MuSyQ-GPP algorithm 
653 |a tree canopy 
653 |a FY-3C/MWRI 
653 |a meteorological factors 
653 |a solar-induced chlorophyll fluorescence 
653 |a metric integration 
653 |a observations 
653 |a polar orbiting satellite 
653 |a arid/semiarid 
653 |a homogeneous and pure pixel filter 
653 |a thermal radiation directionality 
653 |a biodiversity 
653 |a gradient boosting regression tree 
653 |a forest canopy height 
653 |a Landsat 
653 |a subpixel information 
653 |a MODIS 
653 |a humidity profiles 
653 |a NIR 
653 |a geostationary satellite 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1159  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/40344  |7 0  |z DOAB: description of the publication