Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (<A>, <neutA>, <antiA>), where <A> is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, <antiA> is the opposite of <A>, while <neutA> is the neutral (o...
Saved in:
Main Author: | |
---|---|
Other Authors: | , |
Format: | Electronic Book Chapter |
Language: | English |
Published: |
MDPI - Multidisciplinary Digital Publishing Institute
2019
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_40633 | ||
005 | 20210211 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210211s2019 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-03897-476-5 | ||
020 | |a 9783038974758 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-03897-476-5 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
100 | 1 | |a Ali, Mumtaz |4 auth | |
700 | 1 | |a Smarandache, Florentin |4 auth | |
700 | 1 | |a Zhang, Xiaohong |4 auth | |
245 | 1 | 0 | |a Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets |
260 | |b MDPI - Multidisciplinary Digital Publishing Institute |c 2019 | ||
300 | |a 1 electronic resource (450 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (<A>, <neutA>, <antiA>), where <A> is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, <antiA> is the opposite of <A>, while <neutA> is the neutral (or indeterminate) between them, i.e., neither <A> nor <antiA>.Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures - that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-nc-nd/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ | ||
546 | |a English | ||
653 | |a similarity measure | ||
653 | |a generalized partitioned Bonferroni mean operator | ||
653 | |a normal distribution | ||
653 | |a school administrator | ||
653 | |a complex neutrosophic set | ||
653 | |a expert set | ||
653 | |a neutrosophic classification | ||
653 | |a multi-attribute decision-making (MADM) | ||
653 | |a multi-criteria decision-making (MCDM) techniques | ||
653 | |a criterion functions | ||
653 | |a matrix representation | ||
653 | |a possibility degree | ||
653 | |a quantum computation | ||
653 | |a typhoon disaster evaluation | ||
653 | |a NT-subgroup | ||
653 | |a generalized neutrosophic ideal | ||
653 | |a three-way decisions | ||
653 | |a decision-making | ||
653 | |a G-metric | ||
653 | |a multiple attribute group decision-making (MAGDM) | ||
653 | |a SVM | ||
653 | |a semi-neutrosophic triplets | ||
653 | |a LA-semihypergroups | ||
653 | |a power operator | ||
653 | |a fuzzy graph | ||
653 | |a neutrosophic cubic graphs | ||
653 | |a LNGPBM operator | ||
653 | |a neutrosophic c-means clustering | ||
653 | |a (commutative) ideal | ||
653 | |a region growing | ||
653 | |a clustering algorithm | ||
653 | |a Neutrosophic cubic sets | ||
653 | |a forecasting | ||
653 | |a vector similarity measure | ||
653 | |a totally dependent-neutrosophic soft set | ||
653 | |a Fenyves identities | ||
653 | |a TODIM model | ||
653 | |a similarity measures | ||
653 | |a CI-algebra | ||
653 | |a Dice measure | ||
653 | |a de-neutrosophication methods | ||
653 | |a DSmT | ||
653 | |a semigroup | ||
653 | |a VIKOR model | ||
653 | |a multigranulation neutrosophic rough set (MNRS) | ||
653 | |a simplified neutrosophic linguistic numbers | ||
653 | |a Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) | ||
653 | |a multi-criteria group decision making | ||
653 | |a multi-attribute group decision-making (MAGDM) | ||
653 | |a exponential operational laws of interval neutrosophic numbers | ||
653 | |a simplified neutrosophic weighted averaging operator | ||
653 | |a neutro-epimorphism | ||
653 | |a Choquet integral | ||
653 | |a fixed point theory (FPT) | ||
653 | |a computability | ||
653 | |a neutrosophic triplet set | ||
653 | |a interval-valued neutrosophic set | ||
653 | |a simplified neutrosophic sets (SNSs) | ||
653 | |a totally dependent-neutrosophic set | ||
653 | |a Maclaurin symmetric mean | ||
653 | |a recursive enumerability | ||
653 | |a loop | ||
653 | |a photovoltaic plan | ||
653 | |a intersection | ||
653 | |a neutrosophic bipolar fuzzy set | ||
653 | |a big data | ||
653 | |a inclusion relation | ||
653 | |a dual aggregation operators | ||
653 | |a Hamming distance | ||
653 | |a neutro-automorphism | ||
653 | |a neutrosophic set theory | ||
653 | |a multiple attribute decision-making | ||
653 | |a multicriteria decision-making | ||
653 | |a pseudo primitive elements | ||
653 | |a medical diagnosis | ||
653 | |a neutrosophic G-metric | ||
653 | |a bipolar fuzzy set | ||
653 | |a NC power dual MM operator (NCPDMM) operator | ||
653 | |a neutrosophic sets (NSs) | ||
653 | |a emerging technology commercialization | ||
653 | |a neutrosophic triplet groups | ||
653 | |a probabilistic rough sets over two universes | ||
653 | |a neutrosophic triplet set (NTS) | ||
653 | |a neutrosophic triplet cosets | ||
653 | |a MM operator | ||
653 | |a TOPSIS | ||
653 | |a cloud model | ||
653 | |a extended ELECTRE III | ||
653 | |a extended TOPSIS method | ||
653 | |a 2ingle-valued neutrosophic set | ||
653 | |a dual domains | ||
653 | |a probabilistic single-valued (interval) neutrosophic hesitant fuzzy set | ||
653 | |a Jaccard measure | ||
653 | |a data mining | ||
653 | |a BE-algebra | ||
653 | |a neutrosophic soft set | ||
653 | |a aggregation operators | ||
653 | |a image segmentation | ||
653 | |a multiple attribute decision making (MADM) | ||
653 | |a neutrosophic duplets | ||
653 | |a fundamental neutro-homomorphism theorem | ||
653 | |a neutro-homomorphism | ||
653 | |a power aggregation operator | ||
653 | |a linear and non-linear neutrosophic number | ||
653 | |a multi-attribute decision making | ||
653 | |a first neutro-isomorphism theorem | ||
653 | |a MCGDM problems | ||
653 | |a neutrosophic bipolar fuzzy weighted averaging operator | ||
653 | |a Bonferroni mean | ||
653 | |a analytic hierarchy process (AHP) | ||
653 | |a quasigroup | ||
653 | |a action learning | ||
653 | |a weak commutative neutrosophic triplet group | ||
653 | |a generalized aggregation operators | ||
653 | |a single valued neutrosophic multiset (SVNM) | ||
653 | |a sustainable supplier selection problems (SSSPs) | ||
653 | |a LNGWPBM operator | ||
653 | |a skin cancer | ||
653 | |a oracle computation | ||
653 | |a n/a | ||
653 | |a fault diagnosis | ||
653 | |a interval valued neutrosophic support soft sets | ||
653 | |a neutrosophic triplet normal subgroups | ||
653 | |a soft set | ||
653 | |a multi-criteria decision-making | ||
653 | |a neutrosophic triplet | ||
653 | |a generalized group | ||
653 | |a neutrosophic multiset (NM) | ||
653 | |a two universes | ||
653 | |a algorithm | ||
653 | |a multi-attribute decision making (MADM) | ||
653 | |a PA operator | ||
653 | |a BCI-algebra | ||
653 | |a neutrosophic triplet group (NTG) | ||
653 | |a single valued trapezoidal neutrosophic number | ||
653 | |a quasi neutrosophic triplet loop | ||
653 | |a neutrosophy | ||
653 | |a complex neutrosophic graph | ||
653 | |a S-semigroup of neutrosophic triplets | ||
653 | |a and second neutro-isomorphism theorem | ||
653 | |a MADM | ||
653 | |a dermoscopy | ||
653 | |a linguistic neutrosophic sets | ||
653 | |a defuzzification | ||
653 | |a construction project | ||
653 | |a potential evaluation | ||
653 | |a neutrosophic big data | ||
653 | |a decision-making algorithms | ||
653 | |a neutosophic extended triplet subgroups | ||
653 | |a applications of neutrosophic cubic graphs | ||
653 | |a fuzzy time series | ||
653 | |a TFNNs VIKOR method | ||
653 | |a two-factor fuzzy logical relationship | ||
653 | |a oracle Turing machines | ||
653 | |a grasp type | ||
653 | |a interval neutrosophic sets | ||
653 | |a multi-criteria group decision-making | ||
653 | |a interval neutrosophic weighted exponential aggregation (INWEA) operator | ||
653 | |a power aggregation operators | ||
653 | |a neutrosophic triplet group | ||
653 | |a MGNRS | ||
653 | |a 2-tuple linguistic neutrosophic sets (2TLNSs) | ||
653 | |a computation | ||
653 | |a filter | ||
653 | |a multi-valued neutrosophic set | ||
653 | |a integrated weight | ||
653 | |a Bol-Moufang | ||
653 | |a prioritized operator | ||
653 | |a interval number | ||
653 | |a logic | ||
653 | |a pseudo-BCI algebra | ||
653 | |a interval neutrosophic set (INS) | ||
653 | |a neutrosophic rough set | ||
653 | |a soft sets | ||
653 | |a Q-neutrosophic | ||
653 | |a Linguistic neutrosophic sets | ||
653 | |a fuzzy measure | ||
653 | |a homomorphism theorem | ||
653 | |a commutative generalized neutrosophic ideal | ||
653 | |a neutrosophic association rule | ||
653 | |a shopping mall | ||
653 | |a dependent degree | ||
653 | |a Q-linguistic neutrosophic variable set | ||
653 | |a quasi neutrosophic loops | ||
653 | |a symmetry | ||
653 | |a neutrosophic sets | ||
653 | |a neutrosophic logic | ||
653 | |a neutrosophic cubic set | ||
653 | |a complement | ||
653 | |a robotic dexterous hands | ||
653 | |a neutro-monomorphism | ||
653 | |a group | ||
653 | |a analytic network process | ||
653 | |a Muirhead mean | ||
653 | |a maximizing deviation | ||
653 | |a classical group of neutrosophic triplets | ||
653 | |a neutrosophic triplet quotient groups | ||
653 | |a generalized neutrosophic set | ||
653 | |a multi-criteria group decision-making (MCGDM) | ||
653 | |a support soft sets | ||
653 | |a decision making | ||
653 | |a generalized De Morgan algebra | ||
653 | |a multiple attribute group decision making (MAGDM) | ||
653 | |a single-valued neutrosophic multisets | ||
653 | |a 2TLNNs TODIM method | ||
653 | |a membership | ||
653 | |a grasping configurations | ||
653 | |a single valued neutrosophic set (SVNS) | ||
653 | |a multiple attribute decision making problem | ||
653 | |a SWOT analysis | ||
653 | |a neutrosophic clustering | ||
653 | |a hesitant fuzzy set | ||
653 | |a interval neutrosophic numbers (INNs) | ||
653 | |a quasi neutrosophic triplet group | ||
653 | |a triangular fuzzy neutrosophic sets (TFNSs) | ||
653 | |a interdependency of criteria | ||
653 | |a aggregation operator | ||
653 | |a cosine measure | ||
653 | |a neutrosophic set | ||
653 | |a neutrosophic computation | ||
653 | |a decision-making trial and evaluation laboratory (DEMATEL) | ||
653 | |a partial metric spaces (PMS) | ||
653 | |a NCPMM operator | ||
653 | |a clustering | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/1205 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/40633 |7 0 |z DOAB: description of the publication |