Automated Experiments for Deriving Performance-relevant Properties of Software Execution Environments

The software execution environment can play a crucial role when analyzing the performance of a software system. In this book, a novel approach for the automated detection of performance-relevant properties of the execution environment is presented. The properties are detected using predefined experi...

Full description

Saved in:
Bibliographic Details
Main Author: Hauck, Michael (auth)
Format: Electronic Book Chapter
Language:English
Published: KIT Scientific Publishing 2014
Series:The Karlsruhe Series on Software Design and Quality / Ed. by Prof. Dr. Ralf Reussner
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_41638
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2014 xx |||||o ||| 0|eng d
020 |a KSP/1000037233 
020 |a 9783731501381 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000037233  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Hauck, Michael  |4 auth 
245 1 0 |a Automated Experiments for Deriving Performance-relevant Properties of Software Execution Environments 
260 |b KIT Scientific Publishing  |c 2014 
300 |a 1 electronic resource (XVI, 315 p. p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The Karlsruhe Series on Software Design and Quality / Ed. by Prof. Dr. Ralf Reussner 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The software execution environment can play a crucial role when analyzing the performance of a software system. In this book, a novel approach for the automated detection of performance-relevant properties of the execution environment is presented. The properties are detected using predefined experiments and integrated into performance prediction tools. The approach is applied to experiments for detecting different CPU, OS, and virtualization properties, and validated in different case studies. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-sa/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-sa/4.0/ 
546 |a English 
653 |a Execution Environment 
653 |a Measurements 
653 |a Experiments 
653 |a Metamodel 
653 |a Software Performance Prediction 
856 4 0 |a www.oapen.org  |u https://www.ksp.kit.edu/9783731501381  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/41638  |7 0  |z DOAB: description of the publication