Automatische Erkennung von Zuständen in Anthropomatiksystemen
In dieser Arbeit werden adaptive Methoden zur Analyse von Anthropomatikdaten entwickelt. Zielsetzung ist die automatische Erkennung von Systemzuständen mit Hidden-Markov-Modellen. Anwendungsbeispiele sind Bohrgeräusche aus der Wirbelsäulenchirurgie, medizinische Ultraschallbilder und menschliche...
Saved in:
Main Author: | |
---|---|
Format: | Electronic Book Chapter |
Published: |
KIT Scientific Publishing
2006
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In dieser Arbeit werden adaptive Methoden zur Analyse von Anthropomatikdaten entwickelt. Zielsetzung ist die automatische Erkennung von Systemzuständen mit Hidden-Markov-Modellen. Anwendungsbeispiele sind Bohrgeräusche aus der Wirbelsäulenchirurgie, medizinische Ultraschallbilder und menschliche Bewegungsdaten. Neben dem Vergleich mit anderen Klassifikationsverfahren werden Merkmalsgenerierung, geeignete Modellstrukturen, Optimierung der Zustände und Aspekte der Implementierung besprochen. |
---|---|
Physical Description: | 1 electronic resource (XIV, 201 p. p.) |
ISBN: | KSP/1000005025 3866440685 |
Access: | Open Access |