Biological Communities Respond to Multiple Human-Induced Aquatic Environment Change

Perturbations linked to the direct and indirect impacts of human activities during the Anthropocene affect the structure and functioning of aquatic ecosystems to varying degrees. Some perturbations involve stress to aquatic life, including soil and water acidification, soil erosion, loss of base cat...

Full description

Saved in:
Bibliographic Details
Main Author: Manca, Marina (auth)
Other Authors: Piscia, Roberta (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_42221
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-545-7 
020 |a 9783039285457 
020 |a 9783039285440 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-545-7  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KCN  |2 bicssc 
100 1 |a Manca, Marina  |4 auth 
700 1 |a Piscia, Roberta  |4 auth 
245 1 0 |a Biological Communities Respond to Multiple Human-Induced Aquatic Environment Change 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (170 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Perturbations linked to the direct and indirect impacts of human activities during the Anthropocene affect the structure and functioning of aquatic ecosystems to varying degrees. Some perturbations involve stress to aquatic life, including soil and water acidification, soil erosion, loss of base cations, release of trace metals/organic compounds, and application of essential nutrients capable of stimulating primary productivity. Superimposed onto these changes, climate warming impacts aquatic environments via altering species' metabolic processes and by modifying food web interactions. The interaction stressors is difficult to predict because of the differential response of species and taxonomic groups, interacting additively, synergistically, or antagonistically. Whenever different trophic levels respond differently to climate warming, food webs are restructured; yet, the consequences of warming-induced changes for the food web structure and long-term population dynamics of different trophic levels remain poorly understood. Such changes are crucial in lakes, where food web production is mainly due to ectotherms, which are highly sensitive to changes in their surrounding environment. Due to its remarkable physical inertia, including thermal stability, global warming also has a profound effect on groundwater ecosystems. Combining contemporary and palaeo data is essential to understand the degree to which mechanisms of stressors impact on lake biological communities and lake ecosystem functioning. The degree to which alterations can affect aquatic ecosystem structure and functioning also requires functional diversity to be addressed at the molecular level, to reconstruct the role different species play in the transfer of material and energy through the food web. In this issue, we present examples of the impact of different stressors and their interaction on aquatic ecosystems, providing long-term, metabolic, molecular, and paleolimnological analyses. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Environmental economics  |2 bicssc 
653 |a multivariate analyses 
653 |a risk assessment 
653 |a aquatic insects 
653 |a crustaceans 
653 |a lab-microcosms 
653 |a nonmetric multidimensional scaling 
653 |a adaptation 
653 |a porous aquifer 
653 |a PERMANOVA 
653 |a Planktothrix rubescens 
653 |a species conservation 
653 |a distribution patterns of species 
653 |a Cyanobacteria 
653 |a fossil Cladocera 
653 |a high throughput sequencing 
653 |a machine learning model 
653 |a stability 
653 |a small lakes 
653 |a environmental factor 
653 |a non-metric multi-dimensional scaling (NMDS) 
653 |a stream ecosystem 
653 |a lake vulnerability 
653 |a PCA 
653 |a functional diversity 
653 |a ecological resilience 
653 |a nitrification 
653 |a deep lake 
653 |a metabolism 
653 |a South-North Water Diversion Project 
653 |a endemic species 
653 |a EPT taxa 
653 |a trophic interactions 
653 |a stable isotope analysis 
653 |a environmental change 
653 |a bioassessment 
653 |a generalized procrustes analysis 
653 |a freshwater pollution 
653 |a colonization 
653 |a paleolimnology 
653 |a Tychonema bourrellyi 
653 |a plankton 
653 |a subalpine lakes 
653 |a random forest model 
653 |a Danjiangkou Reservoir 
653 |a trophic degree 
653 |a multiple scale 
653 |a biodiversity 
653 |a copepods 
653 |a zooplankton 
653 |a groundwater 
653 |a genetic variability 
653 |a respirometry 
653 |a ammonium impact 
653 |a Stable Isotopes Analysis 
653 |a trophic gradient 
653 |a seasonality 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2336  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/42221  |7 0  |z DOAB: description of the publication