Biomass Processing for Biofuels, Bioenergy and Chemicals

Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy an...

Full description

Saved in:
Bibliographic Details
Main Author: Bhaskar, Thallada (auth)
Other Authors: Chen, Wei-Hsin (auth), Ong, Hwai (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
GCI
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_42257
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-910-3 
020 |a 9783039289103 
020 |a 9783039289097 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-910-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Bhaskar, Thallada  |4 auth 
700 1 |a Chen, Wei-Hsin  |4 auth 
700 1 |a Ong, Hwai  |4 auth 
245 1 0 |a Biomass Processing for Biofuels, Bioenergy and Chemicals 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (428 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a oxidation stability 
653 |a power density 
653 |a lipids 
653 |a pre-treatment 
653 |a dark fermentation 
653 |a hydrodeoxygenation 
653 |a combustion characteristics 
653 |a hydrogen 
653 |a feed solution 
653 |a emission 
653 |a cow manure 
653 |a anaerobic digestion 
653 |a synergistic effect 
653 |a biodiesel 
653 |a thermophilic 
653 |a mesophilic 
653 |a antioxidant 
653 |a crude oil 
653 |a biofuel 
653 |a rice husk 
653 |a base-catalyzed transesterification 
653 |a enzymatic digestibility 
653 |a fatty acid methyl ester 
653 |a coffee mucilage 
653 |a osmotic membrane 
653 |a fermentation 
653 |a forward osmosis 
653 |a Fourier transform infrared spectroscopy 
653 |a lignocellulose 
653 |a dimethyl carbonate 
653 |a diesel 
653 |a triacylglycerides 
653 |a drop-in fuel 
653 |a draw solution 
653 |a subcritical methanol 
653 |a free fatty acids 
653 |a Rhus typhina biodiesel 
653 |a sewage sludge 
653 |a alternative fuel 
653 |a vacuum 
653 |a intake temperature 
653 |a Physico-chemical properties 
653 |a bioethanol 
653 |a energy yield 
653 |a tert-butylhydroquinone 
653 |a non-edible oil 
653 |a biomass 
653 |a nano-catalysts 
653 |a Fatty Acid Methyl Ester 
653 |a bioenergy 
653 |a direct carbon fuel cell 
653 |a viscosity 
653 |a FAME yield 
653 |a reaction kinetics 
653 |a gasification 
653 |a operating conditions 
653 |a injection strategies 
653 |a instar 
653 |a butylated hydroxyanisole 
653 |a torrefaction 
653 |a nanomagnetic catalyst 
653 |a fatty acid methyl esters 
653 |a crude glycerol 
653 |a renewable energy 
653 |a pyrolysis 
653 |a glycerol carbonate 
653 |a single-pellet combustion 
653 |a biodiesel production 
653 |a nanotechnology 
653 |a microwave irradiation 
653 |a pressure-retarded osmosis 
653 |a black soldier fly larvae (BSFL) 
653 |a technology development 
653 |a concentration polarization 
653 |a waste 
653 |a nano-additives 
653 |a bio-jet fuel 
653 |a kinetic study 
653 |a thermogravimetric analysis 
653 |a rubber seed oil 
653 |a combustion 
653 |a potato peels 
653 |a power generation 
653 |a response surface 
653 |a biochar 
653 |a lipid 
653 |a organic wastes 
653 |a extrusion 
653 |a co-combustion 
653 |a biomass pretreatment 
653 |a microwave 
653 |a hardwood 
653 |a Rancimat method 
653 |a anaerobic treatment 
653 |a post-treatment 
653 |a fatty acid methyl ester (FAME) 
653 |a biogas 
653 |a GCI 
653 |a compression ratio 
653 |a membrane fouling 
653 |a environment 
653 |a rice straw 
653 |a pretreatment 
653 |a free fatty acid 
653 |a palm oil mill effluent 
653 |a acclimatization 
653 |a Box-Behnken design 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2309  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/42257  |7 0  |z DOAB: description of the publication