Cancer Nanotheranostics: What Have We Learned So Far?

After a quarter of century of rapid technological advances, research has revealed the complexity of cancer, a disease intimately related to the dynamic transformation of the genome. However, the full understanding of the molecular onset of this disease is still far from achieved and the search for m...

Full description

Saved in:
Bibliographic Details
Main Author: Pedro Viana Baptista (auth)
Other Authors: Jesus M. De La Fuente (auth), Joao Conde (auth), Furong Tian (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2016
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_42645
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2016 xx |||||o ||| 0|eng d
020 |a 978-2-88919-776-7 
020 |a 9782889197767 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88919-776-7  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PN  |2 bicssc 
100 1 |a Pedro Viana Baptista  |4 auth 
700 1 |a Jesus M. De La Fuente  |4 auth 
700 1 |a Joao Conde  |4 auth 
700 1 |a Furong Tian  |4 auth 
245 1 0 |a Cancer Nanotheranostics: What Have We Learned So Far? 
260 |b Frontiers Media SA  |c 2016 
300 |a 1 electronic resource (128 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a After a quarter of century of rapid technological advances, research has revealed the complexity of cancer, a disease intimately related to the dynamic transformation of the genome. However, the full understanding of the molecular onset of this disease is still far from achieved and the search for mechanisms of treatment will follow closely. It is here that Nanotechnology enters the fray offering a wealth of tools to diagnose and treat cancer. In fact, the National Cancer Institute predicts that over the next years, nanotechnology will result in important advances in early detection, molecular imaging, targeted and multifunctional therapeutics, prevention and control of cancer. Nanotechnology offers numerous tools to diagnose and treat cancer, such as new imaging agents, multifunctional devices capable of overcome biological barriers to deliver therapeutic agents directly to cells and tissues involved in cancer growth and metastasis, and devices capable of predicting molecular changes to prevent action against precancerous cells. Nanomaterials-based delivery systems in Theranostics (Diagnostics & Therapy) provide better penetration of therapeutic and diagnostic substances within the body at a reduced risk in comparison to conventional therapies. At the present time, there is a growing need to enhance the capability of theranostics procedures where nanomaterials-based sensors may provide for the simultaneous detection of several gene-associated conditions and nanodevices with the ability to monitor real-time drug action. These innovative multifunctional nanocarriers for cancer theranostics may allow the development of diagnostics systems such as colorimetric and immunoassays, and in therapy approaches through gene therapy, drug delivery and tumor targeting systems in cancer. Some of the thousands and thousands of published nanosystems so far will most likely revolutionize our understanding of biological mechanisms and push forward the clinical practice through their integration in future diagnostics platforms. Nevertheless, despite the significant efforts towards the use of nanomaterials in biologically relevant research, more in vivo studies are needed to assess the applicability of these materials as delivery agents. In fact, only a few went through feasible clinical trials. Nanomaterials have to serve as the norm rather than an exception in the future conventional cancer treatments. Future in vivo work will need to carefully consider the correct choice of chemical modifications to incorporate into the multifunctional nanocarriers to avoid activation off-target, side effects and toxicity. Moreover the majority of studies on nanomaterials do not consider the final application to guide the design of nanomaterial. Instead, the focus is predominantly on engineering materials with specific physical or chemical properties. It is imperative to learn how advances in nanosystem's capabilities are being used to identify new diagnostic and therapy tools driving the development of personalized medicine in oncology; discover how integrating cancer research and nanotechnology modeling can help patient diagnosis and treatment; recognize how to translate nanotheranostics data into an actionable clinical strategy; discuss with industry leaders how nanotheranostics is evolving and what the impact is on current research efforts; and last but not least, learn what approaches are proving fruitful in turning promising clinical data into treatment realities. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Chemistry  |2 bicssc 
653 |a Nanoparticles 
653 |a Gene Therapy 
653 |a Immunotherapy 
653 |a bioimaging 
653 |a theranostics 
653 |a nanomaterials 
653 |a Drug delivery 
653 |a Nanomedicine 
653 |a Cancer 
653 |a Phototherapy 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/2709/cancer-nanotheranostics-what-have-we-learned-so-far  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/42645  |7 0  |z DOAB: description of the publication