Classification and Clustering in Business Cycle Analysis

The analysis of cyclical macroeconomic phenomena is an important field of econometric research. In the recent past, research interests have de-emphasized quantitative forecasting exercises and have addressed the qualitative diagnosis of the relative stance of the economy regarding »upswing«, »recess...

Full description

Saved in:
Bibliographic Details
Main Author: Weihs, Claus (auth)
Other Authors: Heilemann, Ullrich (auth)
Format: Electronic Book Chapter
Language:English
Published: Duncker & Humblot 2007
Series:Schriften des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung (RWI)
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_43336
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2007 xx |||||o ||| 0|eng d
020 |a 978-3-428-52425-9 
020 |a 9783428524259 
040 |a oapen  |c oapen 
024 7 |a 10.3790/978-3-428-52425-9  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Weihs, Claus  |4 auth 
700 1 |a Heilemann, Ullrich  |4 auth 
245 1 0 |a Classification and Clustering in Business Cycle Analysis 
260 |b Duncker & Humblot  |c 2007 
300 |a 1 electronic resource (166 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Schriften des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung (RWI) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The analysis of cyclical macroeconomic phenomena is an important field of econometric research. In the recent past, research interests have de-emphasized quantitative forecasting exercises and have addressed the qualitative diagnosis of the relative stance of the economy regarding »upswing«, »recession«, or »boom« periods, i. e. the classification of the state of the economy into a limited number of discrete states. In this context the principal challenge is to reduce the multifaceted and sometimes abundant quantitative information about the business cycle to such qualitative statements in an efficient way. For more than six years this task was the focus of the project »Multivariate determination and analysis of business cycles« within the SFB 475 »Reduction of complexity in multivariate data structures«, funded by the German Research Foundation (DFG). The necessity for complexity reduction is, of course, not unique to business cycle analysis but is studied in many fields and in a number of ways. This broad interest in the reduction of problem dimensionality and in the appropriate combination of data and of theory caused the RWI Essen and the Statistical Department of the University of Dortmund in January 2002 to hold a workshop at the RWI Essen where the findings of this and similar projects were presented and discussed. The present publication collects revised versions of the papers presented at this workshop. Although the workshop took place some five years ago, these papers mark an importent juncture in the development of business cycle research. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a Makroökonomie 
653 |a Business Cycle 
653 |a Cluster 
856 4 0 |a www.oapen.org  |u https://elibrary.duncker-humblot.com/publikation/b/id/31879/  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/43336  |7 0  |z DOAB: description of the publication