Computer Vision Metrics: Survey, Taxonomy, and Analysis

Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point...

Full description

Saved in:
Bibliographic Details
Main Author: Scott Krig (auth)
Format: Electronic Book Chapter
Language:English
Published: Apress 2014
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_43720
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2014 xx |||||o ||| 0|eng d
020 |a /doi.org/10.1007/978-1-4302-5930-5 
020 |a 9781430259299 
020 |a 9781430259305 
040 |a oapen  |c oapen 
024 7 |a https://doi.org/10.1007/978-1-4302-5930-5  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Scott Krig  |4 auth 
245 1 0 |a Computer Vision Metrics: Survey, Taxonomy, and Analysis 
260 |b Apress  |c 2014 
300 |a 1 electronic resource (508 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing 'how-to' source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners. 
536 |a Intel 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
856 4 0 |a www.oapen.org  |u https://link.springer.com/book/10.1007/978-1-4302-5930-5  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/43720  |7 0  |z DOAB: description of the publication