Conflict and Cooperation in Microbial Societies

The most evident aspect of biodiversity is the variety of complex forms and behaviors among organisms, both living and extinct. Comparative molecular and physiological studies show that the evolution of complex phenotypic traits involves multiple levels of biological organization (i.e. genes, chromo...

Full description

Saved in:
Bibliographic Details
Main Author: Ana E. Escalante (auth)
Other Authors: Michael Travisano (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2017
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_43804
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2017 xx |||||o ||| 0|eng d
020 |a 978-2-88945-143-2 
020 |a 9782889451432 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88945-143-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PSG  |2 bicssc 
100 1 |a Ana E. Escalante  |4 auth 
700 1 |a Michael Travisano  |4 auth 
245 1 0 |a Conflict and Cooperation in Microbial Societies 
260 |b Frontiers Media SA  |c 2017 
300 |a 1 electronic resource (119 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The most evident aspect of biodiversity is the variety of complex forms and behaviors among organisms, both living and extinct. Comparative molecular and physiological studies show that the evolution of complex phenotypic traits involves multiple levels of biological organization (i.e. genes, chromosomes, organelles, cells, individual organisms, species, etc.). Regardless of the specific molecular mechanisms and details, the evolution of different complex biological organizations share a commonality: cooperation and conflict among the parts of the biological unit under study. The potential for conflict among parts is abundant. How then do complex systems persist, given the necessity of cooperative behavior for their maintenance, when the potential for conflict occurs across all levels of biological organization? In this Research Topic and eBook we present ideas and work on the question, how coexistence of biological components at different levels of organization persists in the face of antagonistic, conflicting or even exploitative behavior of the parts? The goal of this topic is in presenting examples of cooperation and conflict at different levels of biological organization to discuss the consequences that this "tension" have had in the diversification and emergence of novel phenotypic traits. Exemplary cases are studies investigating: the evolution of genomes, formation of colonial aggregates of cells, biofilms, the origin and maintenance of multicellular organisms, and the stable coexistence of multispecies consortia producing a cooperative product. Altogether, we hope that the contributions to this Research Topic build towards mechanistic knowledge of the biological phenomenon of coexistence in the face of conflict. We believe that knowledge on the mechanisms of the origin and evolutionary maintenance of cooperation has implications beyond evolutionary biology such as novel approaches in controlling microbial infections in medicine and the modes by studies in synthetic biology are conducted when designing economically important microbial consortia.The most evident aspect of biodiversity is the variety of complex forms and behaviors among organisms, both living and extinct. Comparative molecular and physiological studies show that the evolution of complex phenotypic traits involves multiple levels of biological organization (i.e. genes, chromosomes, organelles, cells, individual organisms, species, etc.). Regardless of the specific molecular mechanisms and details, the evolution of different complex biological organizations share a commonality: cooperation and conflict among the parts of the biological unit under study. The potential for conflict among parts is abundant. How then do complex systems persist, given the necessity of cooperative behavior for their maintenance, when the potential for conflict occurs across all levels of biological organization? In this Research Topic and eBook we present ideas and work on the question, how coexistence of biological components at different levels of organization persists in the face of antagonistic, conflicting or even exploitative behavior of the parts? The goal of this topic is in presenting examples of cooperation and conflict at different levels of biological organization to discuss the consequences that this "tension" have had in the diversification and emergence of novel phenotypic traits. Exemplary cases are studies investigating: the evolution of genomes, formation of colonial aggregates of cells, biofilms, the origin and maintenance of multicellular organisms, and the stable coexistence of multispecies consortia producing a cooperative product. Altogether, we hope that the contributions to this Research Topic build towards mechanistic knowledge of the biological phenomenon of coexistence in the face of conflict. We believe that knowledge on the mechanisms of the origin and evolutionary maintenance of cooperation has implications beyond evolutionary biology such as novel approaches in controlling microbial infections in medicine and the modes by studies in synthetic biology are conducted when designing economically important microbial consortia. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Microbiology (non-medical)  |2 bicssc 
653 |a Antagonism 
653 |a Microbial Interactions 
653 |a Mutualism 
653 |a cooperation 
653 |a conflict 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/2491/conflict-and-cooperation-in-microbial-societies  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/43804  |7 0  |z DOAB: description of the publication