Controlled self-organisation using learning classifier systems

The complexity of technical systems increases, breakdowns occur quite often. The mission of organic computing is to tame these challenges by providing degrees of freedom for self-organised behaviour. To achieve these goals, new methods have to be developed. The proposed observer/controller architect...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Richter, Urban Maximilian (auth)
Formaat: Elektronisch Hoofdstuk
Taal:Engels
Gepubliceerd in: KIT Scientific Publishing 2009
Onderwerpen:
Online toegang:DOAB: download the publication
DOAB: description of the publication
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
Omschrijving
Samenvatting:The complexity of technical systems increases, breakdowns occur quite often. The mission of organic computing is to tame these challenges by providing degrees of freedom for self-organised behaviour. To achieve these goals, new methods have to be developed. The proposed observer/controller architecture constitutes one way to achieve controlled self-organisation. To improve its design, multi-agent scenarios are investigated. Especially, learning using learning classifier systems is addressed.
Fysieke beschrijving:1 electronic resource (XXV, 218 p. p.)
ISBN:KSP/1000013138
9783866444317
Toegang:Open Access