Correlated neuronal activity and its relationship to coding, dynamics and network architecture

Correlated activity in populations of neurons has been observed in many brain regions and plays a central role in cortical coding, attention, and network dynamics. Accurately quantifying neuronal correlations presents several difficulties. For example, despite recent advances in multicellular record...

Full description

Saved in:
Bibliographic Details
Main Author: Tatjana Tchumatchenko (auth)
Other Authors: Robert Rosenbaum (auth), Ruben Moreno-Bote (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2014
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Correlated activity in populations of neurons has been observed in many brain regions and plays a central role in cortical coding, attention, and network dynamics. Accurately quantifying neuronal correlations presents several difficulties. For example, despite recent advances in multicellular recording techniques, the number of neurons from which spiking activity can be simultaneously recorded remains orders magnitude smaller than the size of local networks. In addition, there is a lack of consensus on the distribution of pairwise spike cross correlations obtained in extracellular multi-unit recordings. These challenges highlight the need for theoretical and computational approaches to understand how correlations emerge and to decipher their functional role in the brain.
Physical Description:1 electronic resource (236 p.)
ISBN:978-2-88919-357-8
9782889193578
Access:Open Access