Data-driven Methods for Fault Localization in Process Technology
Control systems at production plants consist of a large number of process variables. When detecting abnormal behavior, these variables generate an alarm. Due to the interconnection of the plant's devices the fault can lead to an alarm flood. This again hides the original location of the causing...
Saved in:
Main Author: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
KIT Scientific Publishing
2013
|
Series: | Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_44557 | ||
005 | 20210211 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210211s2013 xx |||||o ||| 0|eng d | ||
020 | |a KSP/1000036427 | ||
020 | |a 9783731500988 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.5445/KSP/1000036427 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
100 | 1 | |a Kühnert, Christian |4 auth | |
245 | 1 | 0 | |a Data-driven Methods for Fault Localization in Process Technology |
260 | |b KIT Scientific Publishing |c 2013 | ||
300 | |a 1 electronic resource (XVIII, 194 p. p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe | |
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Control systems at production plants consist of a large number of process variables. When detecting abnormal behavior, these variables generate an alarm. Due to the interconnection of the plant's devices the fault can lead to an alarm flood. This again hides the original location of the causing device. In this work several data-driven approaches for root cause localization are proposed, compared and combined. All methods analyze disturbed process data for backtracking the propagation path. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-sa/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-sa/4.0/ | ||
546 | |a English | ||
653 | |a Time series | ||
653 | |a Signal processing | ||
653 | |a Data Mining | ||
653 | |a System identification | ||
653 | |a Causality | ||
856 | 4 | 0 | |a www.oapen.org |u https://www.ksp.kit.edu/9783731500988 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/44557 |7 0 |z DOAB: description of the publication |