Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines

Plant gene transfer achieved in the early '80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was...

Full description

Saved in:
Bibliographic Details
Main Author: Domenico De Martinis (auth)
Other Authors: Edward P. Rybicki (auth), Eugenio Benvenuto (auth), Rosella Franconi (auth), Kazuhito Fujiyama (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2017
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_46423
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2017 xx |||||o ||| 0|eng d
020 |a 978-2-88945-051-0 
020 |a 9782889450510 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88945-051-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TCB  |2 bicssc 
100 1 |a Domenico De Martinis  |4 auth 
700 1 |a Edward P. Rybicki  |4 auth 
700 1 |a Eugenio Benvenuto  |4 auth 
700 1 |a Rosella Franconi  |4 auth 
700 1 |a Kazuhito Fujiyama  |4 auth 
245 1 0 |a Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines 
260 |b Frontiers Media SA  |c 2017 
300 |a 1 electronic resource (377 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Plant gene transfer achieved in the early '80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the "green biofactory" implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the "plant factory" attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. "Farming for Pharming" biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early '80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the "green biofactory" implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the "plant factory" attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. "Farming for Pharming" biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Biotechnology  |2 bicssc 
653 |a plant molecular farming 
653 |a Metabolic Engineering 
653 |a transient expression 
653 |a Genetic Engineering 
653 |a recombinant protein 
653 |a biopharmaceuticals 
653 |a Plant factory 
653 |a Biobetter 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/3853/engineering-the-plant-factory-for-the-production-of-biologics-and-small-molecule-medicines  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/46423  |7 0  |z DOAB: description of the publication