Evolution of Gene Regulatory Networks in Plant Development

During their life cycle plants undergo a wide variety of morphological and developmental changes. Impinging these developmental processes there is a layer of gene, protein and metabolic networks that are responsible for the initiation of the correct developmental transitions at the right time of the...

Full description

Saved in:
Bibliographic Details
Main Author: Jose M. Romero (auth)
Other Authors: Federico Valverde (auth), Andrew Groover (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2018
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_47136
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2018 xx |||||o ||| 0|eng d
020 |a 978-2-88945-407-5 
020 |a 9782889454075 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88945-407-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PST  |2 bicssc 
100 1 |a Jose M. Romero  |4 auth 
700 1 |a Federico Valverde  |4 auth 
700 1 |a Andrew Groover  |4 auth 
245 1 0 |a Evolution of Gene Regulatory Networks in Plant Development 
260 |b Frontiers Media SA  |c 2018 
300 |a 1 electronic resource (252 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a During their life cycle plants undergo a wide variety of morphological and developmental changes. Impinging these developmental processes there is a layer of gene, protein and metabolic networks that are responsible for the initiation of the correct developmental transitions at the right time of the year to ensure plant life success. New omic technologies are allowing the acquisition of massive amount of data to develop holistic and integrative analysis to understand complex processes. Among them, Microarray, Next-generation Sequencing (NGS) and Proteomics are providing enormous amount of data from different plant species and developmental stages, thus allowing the analysis of gene networks globally. Besides, the comparison of molecular networks from different species is providing information on their evolutionary history, shedding light on the origin of many key genes/proteins. Moreover, developmental processes are not only genetically programed but are also affected by internal and external signals. Metabolism, light, hormone action, temperature, biotic and abiotic stresses, etc. have a deep effect on developmental programs. The interface and interplay between these internal and external circuits with developmental programs can be unraveled through the integration of systematic experimentation with the computational analysis of the generated omics data (Molecular Systems Biology). This Research Topic intends to deepen in the different plant developmental pathways and how the corresponding gene networks evolved from a Molecular Systems Biology perspective. Global approaches for photoperiod, circadian clock and hormone regulated processes; pattern formation, phase-transitions, organ development, etc. will provide new insights on how plant complexity was built during evolution. Understanding the interface and interplay between different regulatory networks will also provide fundamental information on plant biology and focus on those traits that may be important for next-generation agriculture. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Botany & plant sciences  |2 bicssc 
653 |a Plant Development 
653 |a Omics 
653 |a Molecular Systems Biology 
653 |a Evolution 
653 |a Gene Regulatory Networks 
856 4 0 |a www.oapen.org  |u https://www.frontiersin.org/research-topics/4033/evolution-of-gene-regulatory-networks-in-plant-development  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/47136  |7 0  |z DOAB: description of the publication