Evolutionary Computation

Computational intelligence is a general term for a class of algorithms designed by nature's wisdom and human intelligence. Computer scientists have proposed many computational intelligence algorithms with heuristic features. These algorithms either mimic the evolutionary processes of the biolog...

Full description

Saved in:
Bibliographic Details
Main Author: Alavi, Amir (auth)
Other Authors: Wang, Gai-Ge (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
EHO
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_47147
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2019 xx |||||o ||| 0|eng d
020 |a books978-3-03921-929-2 
020 |a 9783039219285 
020 |a 9783039219292 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03921-929-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Alavi, Amir  |4 auth 
700 1 |a Wang, Gai-Ge  |4 auth 
245 1 0 |a Evolutionary Computation 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (424 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Computational intelligence is a general term for a class of algorithms designed by nature's wisdom and human intelligence. Computer scientists have proposed many computational intelligence algorithms with heuristic features. These algorithms either mimic the evolutionary processes of the biological world, mimic the physiological structure and bodily functions of the organism, 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a individual updating strategy 
653 |a integrated design 
653 |a global optimum 
653 |a flexible job shop scheduling problem 
653 |a whale optimization algorithm 
653 |a EHO 
653 |a bat algorithm with multiple strategy coupling (mixBA) 
653 |a multi-objective DV-Hop localization algorithm 
653 |a optimization 
653 |a rock types 
653 |a variable neighborhood search 
653 |a biology 
653 |a average iteration times 
653 |a CEC2013 benchmarks 
653 |a slicing tree structure 
653 |a firefly algorithm (FA) 
653 |a benchmark 
653 |a single loop 
653 |a evolutionary computation 
653 |a memetic algorithm 
653 |a normal cloud model 
653 |a 0-1 knapsack problems 
653 |a elite strategy 
653 |a diversity maintenance 
653 |a material handling path 
653 |a artificial bee colony algorithm (ABC) 
653 |a urban design 
653 |a entropy 
653 |a evolutionary algorithms (EAs) 
653 |a monarch butterfly optimization 
653 |a numerical simulation 
653 |a architecture 
653 |a set-union knapsack problem 
653 |a Wilcoxon test 
653 |a convolutional neural network 
653 |a global position updating operator 
653 |a particle swarm optimization 
653 |a computation 
653 |a minimum load coloring 
653 |a topology structure 
653 |a adaptive multi-swarm 
653 |a minimum total dominating set 
653 |a mutation operation 
653 |a shape grammar 
653 |a greedy optimization algorithm 
653 |a ?-Hilbert space 
653 |a genetic algorithm 
653 |a large scale optimization 
653 |a large-scale optimization 
653 |a NSGA-II-DV-Hop 
653 |a constrained optimization problems (COPs) 
653 |a first-arrival picking 
653 |a transfer function 
653 |a SPEA 2 
653 |a stochastic ranking (SR) 
653 |a wireless sensor networks (WSNs) 
653 |a acceleration search 
653 |a convergence point 
653 |a fuzzy c-means 
653 |a evolutionary algorithm 
653 |a success rates 
653 |a Artificial bee colony 
653 |a particle swarm optimizer 
653 |a random weight 
653 |a range detection 
653 |a adaptive weight 
653 |a large-scale 
653 |a automatic identification 
653 |a cloud model 
653 |a swarm intelligence 
653 |a evolutionary multi-objective optimization 
653 |a DV-Hop algorithm 
653 |a bat algorithm (BA) 
653 |a Friedman test 
653 |a quantum uncertainty property 
653 |a facility layout design 
653 |a local search 
653 |a deep learning 
653 |a Y conditional cloud generator 
653 |a benchmark functions 
653 |a discrete algorithm 
653 |a dispatching rule 
653 |a DE algorithm 
653 |a nonlinear convergence factor 
653 |a energy-efficient job shop scheduling 
653 |a t-test 
653 |a evolution 
653 |a dimension learning 
653 |a global optimization 
653 |a confidence term 
653 |a elephant herding optimization 
653 |a moth search algorithm 
653 |a evolutionary 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1860  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/47147  |7 0  |z DOAB: description of the publication