Fast Ionic Conductors and Solid-Solid Interfaces Designed for Next Generation Solid-State Batteries

The EV Everywhere Grand Challenge requires a breakthrough in energy storage technology. State-of-the-art Li-ion technology is currently used in low volume production plug-in hybrid and niche high performance vehicles; however, the widespread adoption of electrified powertrains requires a four-fold i...

Full description

Saved in:
Bibliographic Details
Main Author: Jeff Sakamoto (auth)
Other Authors: Fuminori Mizuno (auth), Shyue Ping Ong (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2018
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_47433
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2018 xx |||||o ||| 0|eng d
020 |a 978-2-88945-647-5 
020 |a 9782889456475 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88945-647-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Jeff Sakamoto  |4 auth 
700 1 |a Fuminori Mizuno  |4 auth 
700 1 |a Shyue Ping Ong  |4 auth 
245 1 0 |a Fast Ionic Conductors and Solid-Solid Interfaces Designed for Next Generation Solid-State Batteries 
260 |b Frontiers Media SA  |c 2018 
300 |a 1 electronic resource (136 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The EV Everywhere Grand Challenge requires a breakthrough in energy storage technology. State-of-the-art Li-ion technology is currently used in low volume production plug-in hybrid and niche high performance vehicles; however, the widespread adoption of electrified powertrains requires a four-fold increase in performance, 25% lower cost, and safer batteries without the possibility of combustion. One approach for this target is to develop solid-state batteries (SSBs) offering improved performance, reduced peripheral mass, and unprecedented safety. SSB could offer higher energy density, by enabling new cell designs, such as bipolar stacking, leading to reduced peripheral mass and volume. To enable SSBs, a crucial requirement is a fast-ion conducting solid electrolyte. To date, myriad solid-state electrolytes have been reported exhibiting Li ion conductivities approaching those of today's liquid electrolyte membranes. Moreover, several new materials are reported to have wide electrochemical window and single-ion mobility. Leveraging decades of research focused on Li-based electrodes for Li-ion batteries, the discovery of new solid-state electrolytes could enable access to these electrodes; specifically, Li metal and high voltage electrodes (>5V). However, transitioning SSBs from the laboratory to EVs requires answers to fundamental questions such as: (1) how does Li-ion transport through the solid electrolyte / solid electrode interface work? (2) will solid electrolytes enable bulk-scale Li metal anode and high voltage cathodes?, and (3) how will ceramic-based cells be manufactured in large-format battery packs? The purpose of this Research Topic is to provide new insights obtained through the fundamental understanding of materials chemistry, electrochemistry, advanced analysis and computational simulations. We hope these aspects will summarize current challenges and provide opportunities for future research to develop the next generation SSBs. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a ionic conductors 
653 |a solid-state batteries (SSBs) 
856 4 0 |a www.oapen.org  |u https://www.frontiersin.org/research-topics/4180/fast-ionic-conductors-and-solid-solid-interfaces-designed-for-next-generation-solid-state-batteries  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/47433  |7 0  |z DOAB: description of the publication