Flood Forecasting Using Machine Learning Methods
This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water
Saved in:
Main Author: | |
---|---|
Other Authors: | , |
Format: | Electronic Book Chapter |
Language: | English |
Published: |
MDPI - Multidisciplinary Digital Publishing Institute
2019
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_47751 | ||
005 | 20210211 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210211s2019 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-03897-549-6 | ||
020 | |a 9783038975489 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-03897-549-6 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TBX |2 bicssc | |
100 | 1 | |a Chang, Fi-John |4 auth | |
700 | 1 | |a Hsu, Kuolin |4 auth | |
700 | 1 | |a Chang, Li-Chiu |4 auth | |
245 | 1 | 0 | |a Flood Forecasting Using Machine Learning Methods |
260 | |b MDPI - Multidisciplinary Digital Publishing Institute |c 2019 | ||
300 | |a 1 electronic resource (376 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-nc-nd/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ | ||
546 | |a English | ||
650 | 7 | |a History of engineering & technology |2 bicssc | |
653 | |a natural hazards & | ||
653 | |a artificial neural network | ||
653 | |a flood routing | ||
653 | |a the Three Gorges Dam | ||
653 | |a backtracking search optimization algorithm (BSA) | ||
653 | |a lag analysis | ||
653 | |a artificial intelligence | ||
653 | |a classification and regression trees (CART) | ||
653 | |a decision tree | ||
653 | |a real-time | ||
653 | |a optimization | ||
653 | |a ensemble empirical mode decomposition (EEMD) | ||
653 | |a improved bat algorithm | ||
653 | |a convolutional neural networks | ||
653 | |a ANFIS | ||
653 | |a method of tracking energy differences (MTED) | ||
653 | |a adaptive neuro-fuzzy inference system (ANFIS) | ||
653 | |a recurrent nonlinear autoregressive with exogenous inputs (RNARX) | ||
653 | |a disasters | ||
653 | |a flood prediction | ||
653 | |a ANN-based models | ||
653 | |a flood inundation map | ||
653 | |a ensemble machine learning | ||
653 | |a flood forecast | ||
653 | |a sensitivity | ||
653 | |a hydrologic models | ||
653 | |a phase space reconstruction | ||
653 | |a water level forecast | ||
653 | |a data forward prediction | ||
653 | |a early flood warning systems | ||
653 | |a bees algorithm | ||
653 | |a random forest | ||
653 | |a uncertainty | ||
653 | |a soft computing | ||
653 | |a data science | ||
653 | |a hydrometeorology | ||
653 | |a LSTM | ||
653 | |a rating curve method | ||
653 | |a forecasting | ||
653 | |a superpixel | ||
653 | |a particle swarm optimization | ||
653 | |a high-resolution remote-sensing images | ||
653 | |a machine learning | ||
653 | |a support vector machine | ||
653 | |a Lower Yellow River | ||
653 | |a extreme event management | ||
653 | |a runoff series | ||
653 | |a empirical wavelet transform | ||
653 | |a Muskingum model | ||
653 | |a hydrograph predictions | ||
653 | |a bat algorithm | ||
653 | |a data scarce basins | ||
653 | |a Wilson flood | ||
653 | |a self-organizing map | ||
653 | |a big data | ||
653 | |a extreme learning machine (ELM) | ||
653 | |a hydroinformatics | ||
653 | |a nonlinear Muskingum model | ||
653 | |a invasive weed optimization | ||
653 | |a rainfall-runoff | ||
653 | |a flood forecasting | ||
653 | |a artificial neural networks | ||
653 | |a flash-flood | ||
653 | |a streamflow predictions | ||
653 | |a precipitation-runoff | ||
653 | |a the upper Yangtze River | ||
653 | |a survey | ||
653 | |a parameters | ||
653 | |a Haraz watershed | ||
653 | |a ANN | ||
653 | |a time series prediction | ||
653 | |a postprocessing | ||
653 | |a flood susceptibility modeling | ||
653 | |a rainfall-runoff | ||
653 | |a deep learning | ||
653 | |a database | ||
653 | |a LSTM network | ||
653 | |a ensemble technique | ||
653 | |a hybrid neural network | ||
653 | |a self-organizing map (SOM) | ||
653 | |a data assimilation | ||
653 | |a particle filter algorithm | ||
653 | |a monthly streamflow forecasting | ||
653 | |a Dongting Lake | ||
653 | |a machine learning methods | ||
653 | |a micro-model | ||
653 | |a stopping criteria | ||
653 | |a Google Maps | ||
653 | |a cultural algorithm | ||
653 | |a wolf pack algorithm | ||
653 | |a flood events | ||
653 | |a urban water bodies | ||
653 | |a Karahan flood | ||
653 | |a St. Venant equations | ||
653 | |a hybrid & | ||
653 | |a hydrologic model | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/1151 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/47751 |7 0 |z DOAB: description of the publication |