Framework for Analysis and Identification of Nonlinear Distributed Parameter Systems using Bayesian Uncertainty Quantification based on Generalized Polynomial Chaos

In this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analy...

Full description

Saved in:
Bibliographic Details
Main Author: Janya-anurak, Chettapong (auth)
Format: Electronic Book Chapter
Language:English
Published: KIT Scientific Publishing 2017
Series:Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_47993
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2017 xx |||||o ||| 0|eng d
020 |a KSP/1000066940 
020 |a 9783731506423 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000066940  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Janya-anurak, Chettapong  |4 auth 
245 1 0 |a Framework for Analysis and Identification of Nonlinear Distributed Parameter Systems using Bayesian Uncertainty Quantification based on Generalized Polynomial Chaos 
260 |b KIT Scientific Publishing  |c 2017 
300 |a 1 electronic resource (XIX, 210 p. p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing the system systematically and reducing the disagreement between the model predictions and the measurements of the real processes to fulfill user defined performance criteria. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-sa/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-sa/4.0/ 
546 |a English 
653 |a ParameterschätzungUncertainty Quantification 
653 |a Parameter estimation 
653 |a verteilt-parametrische Systeme 
653 |a Sensitivity Analysis 
653 |a generalized polynomial chaos 
653 |a Distributed Parameter Systems 
653 |a Sensitivitätsanalyse 
653 |a Unsicherheit Quantifizierung 
856 4 0 |a www.oapen.org  |u https://www.ksp.kit.edu/9783731506423  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/47993  |7 0  |z DOAB: description of the publication