Grappling with the Multifaceted World of the DNA Damage Response

DNA damage is a major threat to genomic integrity and cell survival. It can arise both spontaneously and in response to exogenous agents. DNA damage can attack most parts of the DNA structure, ranging from minor and major chemical modifications, to single-strand breaks (SSBs) and gaps, to full doubl...

Full description

Saved in:
Bibliographic Details
Main Author: Antonio Porro (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2017
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_48864
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2017 xx |||||o ||| 0|eng d
020 |a 978-2-88945-057-2 
020 |a 9782889450572 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88945-057-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PSAK  |2 bicssc 
100 1 |a Antonio Porro  |4 auth 
245 1 0 |a Grappling with the Multifaceted World of the DNA Damage Response 
260 |b Frontiers Media SA  |c 2017 
300 |a 1 electronic resource (306 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a DNA damage is a major threat to genomic integrity and cell survival. It can arise both spontaneously and in response to exogenous agents. DNA damage can attack most parts of the DNA structure, ranging from minor and major chemical modifications, to single-strand breaks (SSBs) and gaps, to full double-strand breaks (DSBs). If DNA injuries are mis-repaired or unrepaired, they may ultimately result in mutations or wider-scale genome aberrations that threaten cell homeostasis. Consequently, the cells elicit an elaborate signalling network, known as DNA damage response (DDR), to detect and repair these cytotoxic lesions. This Research Topic was aimed at comprehensive investigations of basic and novel mechanisms that underlie the DNA damage response in eukaryotes.DNA damage is a major threat to genomic integrity and cell survival. It can arise both spontaneously and in response to exogenous agents. DNA damage can attack most parts of the DNA structure, ranging from minor and major chemical modifications, to single-strand breaks (SSBs) and gaps, to full double-strand breaks (DSBs). If DNA injuries are mis-repaired or unrepaired, they may ultimately result in mutations or wider-scale genome aberrations that threaten cell homeostasis. Consequently, the cells elicit an elaborate signalling network, known as DNA damage response (DDR), to detect and repair these cytotoxic lesions. This Research Topic was aimed at comprehensive investigations of basic and novel mechanisms that underlie the DNA damage response in eukaryotes. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Genetics (non-medical)  |2 bicssc 
653 |a genome instability 
653 |a DNA damage response 
653 |a DNA Repair 
653 |a Genome integrity 
653 |a DNA Damage 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/916/grappling-with-the-multifaceted-world-of-the-dna-damage-response  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/48864  |7 0  |z DOAB: description of the publication