Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, c...

Full description

Saved in:
Bibliographic Details
Main Author: Wei-Chiang Hong (Ed.) (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2018
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_49697
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2018 xx |||||o ||| 0|eng d
020 |a books978-3-03897-287-7 
020 |a 9783038972877 
020 |a 9783038972860 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03897-287-7  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UY  |2 bicssc 
100 1 |a Wei-Chiang Hong (Ed.)  |4 auth 
245 1 0 |a Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2018 
300 |a 1 electronic resource (250 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Computer science  |2 bicssc 
653 |a hybrid models 
653 |a chaotic mapping mechanism 
653 |a recurrence plot theory 
653 |a energy forecasting 
653 |a empirical mode decomposition 
653 |a evolutionary algorithms 
653 |a quantum computing mechanism 
653 |a general regression neural network 
653 |a optimization methodologies 
653 |a support vector regression/support vector machines 
856 4 0 |a www.oapen.org  |u https://www.mdpi.com/books/pdfview/book/839  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/49697  |7 0  |z DOAB: description of the publication